Datasets:
Tasks:
Text Classification
Modalities:
Text
Sub-tasks:
multi-class-classification
Languages:
English
Size:
10K - 100K
# coding=utf-8 | |
"""HoC : Hallmarks of Cancer Corpus""" | |
import datasets | |
from pathlib import Path | |
logger = datasets.logging.get_logger(__name__) | |
_CITATION = """ | |
@article{baker2015automatic, | |
title={Automatic semantic classification of scientific literature according to the hallmarks of cancer}, | |
author={Baker, Simon and Silins, Ilona and Guo, Yufan and Ali, Imran and H{\"o}gberg, Johan and Stenius, Ulla and Korhonen, Anna}, | |
journal={Bioinformatics}, | |
volume={32}, | |
number={3}, | |
pages={432--440}, | |
year={2015}, | |
publisher={Oxford University Press} | |
} | |
@article{baker2017cancer, | |
title={Cancer Hallmarks Analytics Tool (CHAT): a text mining approach to organize and evaluate scientific literature on cancer}, | |
author={Baker, Simon and Ali, Imran and Silins, Ilona and Pyysalo, Sampo and Guo, Yufan and H{\"o}gberg, Johan and Stenius, Ulla and Korhonen, Anna}, | |
journal={Bioinformatics}, | |
volume={33}, | |
number={24}, | |
pages={3973--3981}, | |
year={2017}, | |
publisher={Oxford University Press} | |
} | |
@article{baker2017cancer, | |
title={Cancer hallmark text classification using convolutional neural networks}, | |
author={Baker, Simon and Korhonen, Anna-Leena and Pyysalo, Sampo}, | |
year={2016} | |
} | |
@article{baker2017initializing, | |
title={Initializing neural networks for hierarchical multi-label text classification}, | |
author={Baker, Simon and Korhonen, Anna}, | |
journal={BioNLP 2017}, | |
pages={307--315}, | |
year={2017} | |
} | |
""" | |
_LICENSE = """ | |
GNU General Public License v3.0 | |
""" | |
_DESCRIPTION = """ | |
The Hallmarks of Cancer Corpus for text classification | |
The Hallmarks of Cancer (HOC) Corpus consists of 1852 PubMed | |
publication abstracts manually annotated by experts according | |
to a taxonomy. The taxonomy consists of 37 classes in a | |
hierarchy. Zero or more class labels are assigned to each | |
sentence in the corpus. The labels are found under the "labels" | |
directory, while the tokenized text can be found under "text" | |
directory. The filenames are the corresponding PubMed IDs (PMID). | |
In addition to the HOC corpus, we also have the | |
[Cancer Hallmarks Analytics Tool](http://chat.lionproject.net/) | |
which classifes all of PubMed according to the HoC taxonomy. | |
""" | |
_HOMEPAGE = "https://github.com/sb895/Hallmarks-of-Cancer" | |
_URLs = { | |
"corpus": "https://github.com/sb895/Hallmarks-of-Cancer/archive/refs/heads/master.zip", | |
"split_indices": "https://microsoft.github.io/BLURB/sample_code/data_generation.tar.gz", | |
} | |
_CLASS_NAMES = [ | |
"evading growth suppressors", | |
"tumor promoting inflammation", | |
"enabling replicative immortality", | |
"cellular energetics", | |
"resisting cell death", | |
"activating invasion and metastasis", | |
"genomic instability and mutation", | |
"none", | |
"inducing angiogenesis", | |
"sustaining proliferative signaling", | |
"avoiding immune destruction", | |
] | |
class HoC(datasets.GeneratorBasedBuilder): | |
"""HoC : Hallmarks of Cancer Corpus""" | |
BUILDER_CONFIGS = [ | |
datasets.BuilderConfig( | |
name = "HoC", | |
version = datasets.Version("1.0.0"), | |
description = f"The HoC corpora", | |
) | |
] | |
DEFAULT_CONFIG_NAME = "HoC" | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"document_id": datasets.Value("string"), | |
"text": datasets.Value("string"), | |
"label": [datasets.ClassLabel(names=_CLASS_NAMES)], | |
}, | |
), | |
supervised_keys=None, | |
homepage=_HOMEPAGE, | |
citation=_CITATION, | |
license=_LICENSE, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
data_dir = dl_manager.download_and_extract(_URLs) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={ | |
"corpus_path": Path(data_dir["corpus"]), | |
"indices_path": Path(data_dir["split_indices"]) / "data_generation/indexing/HoC/train_pmid.tsv", | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={ | |
"corpus_path": Path(data_dir["corpus"]), | |
"indices_path": Path(data_dir["split_indices"]) / "data_generation/indexing/HoC/dev_pmid.tsv", | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={ | |
"corpus_path": Path(data_dir["corpus"]), | |
"indices_path": Path(data_dir["split_indices"]) / "data_generation/indexing/HoC/test_pmid.tsv", | |
}, | |
), | |
] | |
def _generate_examples(self, corpus_path: Path, indices_path: Path): | |
indices = indices_path.read_text(encoding="utf8").strip("\n").split(",") | |
dataset_dir = corpus_path / "Hallmarks-of-Cancer-master" | |
texts_dir = dataset_dir / "text" | |
labels_dir = dataset_dir / "labels" | |
for document_index, document in enumerate(indices): | |
text_file = texts_dir / document | |
label_file = labels_dir / document | |
text = text_file.read_text(encoding="utf8").strip("\n") | |
labels = label_file.read_text(encoding="utf8").strip("\n") | |
sentences = text.split("\n") | |
labels = labels.split("<")[1:] | |
for example_index, example_pair in enumerate(zip(sentences, labels)): | |
sentence, label = example_pair | |
label = label.strip() | |
if label == "": | |
label = "none" | |
multi_labels = [m_label.strip() for m_label in label.split("AND")] | |
unique_multi_labels = {m_label.split("--")[0].lower().lstrip() for m_label in multi_labels if m_label != "NULL"} | |
unique_key = 100 * document_index + example_index | |
yield unique_key, { | |
"document_id": f"{text_file.name.split('.')[0]}_{example_index}", | |
"text": sentence, | |
"label": list(unique_multi_labels), | |
} |