File size: 15,441 Bytes
d3d64f1 9a6b58c d3d64f1 04b426d d3d64f1 876ba49 eb05bd9 c08cb7b d3d64f1 c9b09e8 d3d64f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 |
---
annotations_creators:
- machine-generated
- expert-generated
language_creators:
- found
language:
- fr
language_bcp47:
- fr-FR
pretty_name: ANTILLES
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- token-classification
task_ids:
- part-of-speech-tagging
---
# ANTILLES : An Open French Linguistically Enriched Part-of-Speech Corpus
## Table of Contents
- [Dataset Card for [Needs More Information]](#dataset-card-for-needs-more-information)
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [sent_id = fr-ud-dev_00005](#sent_id--fr-ud-dev_00005)
- [text = Travail de trés grande qualité exécuté par un imprimeur artisan passionné.](#text--travail-de-trs-grande-qualit-excut-par-un-imprimeur-artisan-passionn)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Initial Data Collection and Normalization](#initial-data-collection-and-normalization)
- [Who are the source language producers?](#who-are-the-source-language-producers)
- [Annotations](#annotations)
- [Annotation process](#annotation-process)
- [Who are the annotators?](#who-are-the-annotators)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## Dataset Description
- **Homepage:** https://qanastek.github.io/ANTILLES/
- **Repository:** https://github.com/qanastek/ANTILLES
- **Paper:** https://hal.archives-ouvertes.fr/hal-03696042/document
- **Leaderboard:** https://paperswithcode.com/dataset/antilles
- **Point of Contact:** [Yanis Labrak](mailto:[email protected])
### Dataset Summary
`ANTILLES` is a part-of-speech tagging corpora based on [UD_French-GSD](https://universaldependencies.org/treebanks/fr_gsd/index.html) which was originally created in 2015 and is based on the [universal dependency treebank v2.0](https://github.com/ryanmcd/uni-dep-tb).
Originally, the corpora consists of 400,399 words (16,341 sentences) and had 17 different classes. Now, after applying our tags augmentation script `transform.py`, we obtain 60 different classes which add semantic information such as: the gender, number, mood, person, tense or verb form given in the different CoNLL-U fields from the original corpora.
We based our tags on the level of details given by the [LIA_TAGG](http://pageperso.lif.univ-mrs.fr/frederic.bechet/download.html) statistical POS tagger written by [Frédéric Béchet](http://pageperso.lif.univ-mrs.fr/frederic.bechet/index-english.html) in 2001.
<a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/"><img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by-sa/4.0/88x31.png" /></a><br />This work is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/">Creative Commons Attribution-ShareAlike 4.0 International License</a>.
### Supported Tasks and Leaderboards
`part-of-speech-tagging`: The dataset can be used to train a model for part-of-speech-tagging. The performance is measured by how high its F1 score is. A Flair Sequence-To-Sequence model trained to tag tokens from Wikipedia passages achieves a F1 score (micro) of 0.952.
### Languages
The text in the dataset is in French, as spoken by [Wikipedia](https://en.wikipedia.org/wiki/Main_Page) users. The associated [BCP-47](https://tools.ietf.org/html/bcp47) code is `fr`.
## Load the dataset
### HuggingFace
```python
from datasets import load_dataset
dataset = load_dataset("qanastek/ANTILLES")
print(dataset)
```
### FlairNLP
```python
from flair.datasets import UniversalDependenciesCorpus
corpus: Corpus = UniversalDependenciesCorpus(
data_folder='ANTILLES',
train_file="train.conllu",
test_file="test.conllu",
dev_file="dev.conllu"
)
```
## Load the model
### Flair ([model](https://huggingface.co/qanastek/pos-french))
```python
from flair.models import SequenceTagger
tagger = SequenceTagger.load("qanastek/pos-french")
```
## HuggingFace Spaces
<table style="width: fit-content;">
<thead>
<tr>
<td>
<a href="https://huggingface.co/spaces/qanastek/French-Part-Of-Speech-Tagging">
<img src="https://huggingface.co/datasets/qanastek/ANTILLES/raw/main/imgs/en.png" width="160">
</a>
</td>
<td>
<a href="https://huggingface.co/spaces/qanastek/Etiqueteur-Morphosyntaxique-Etendu">
<img src="https://huggingface.co/datasets/qanastek/ANTILLES/raw/main/imgs/fr.png" width="160">
</a>
</td>
</tr>
</thead>
</table>
## Dataset Structure
### Data Instances
```plain
# sent_id = fr-ud-dev_00005
# text = Travail de trés grande qualité exécuté par un imprimeur artisan passionné.
1 Travail travail NMS _ Gender=Masc|Number=Sing 0 root _ wordform=travail
2 de de PREP _ _ 5 case _ _
3 trés trés ADV _ _ 4 advmod _ _
4 grande grand ADJFS _ Gender=Fem|Number=Sing 5 amod _ _
5 qualité qualité NFS _ Gender=Fem|Number=Sing 1 nmod _ _
6 exécuté exécuter VPPMS _ Gender=Masc|Number=Sing|Tense=Past|VerbForm=Part 1 acl _ _
7 par par PREP _ _ 9 case _ _
8 un un DINTMS _ Definite=Ind|Gender=Masc|Number=Sing|PronType=Art 9 det _ _
9 imprimeur imprimeur NMS _ Gender=Masc|Number=Sing 6 obl:agent _ _
10 artisan artisan NMS _ Gender=Masc|Number=Sing 9 nmod _ _
11 passionné passionné ADJMS _ Gender=Masc|Number=Sing 9 amod _ SpaceAfter=No
12 . . YPFOR _ _ 1 punct _ _
```
### Data Fields
| Abbreviation | Description | Examples | # tokens |
|:--------:|:--------:|:--------:|:--------:|
| PREP | Preposition | de | 63 738 |
| AUX | Auxiliary Verb | est | 12 886 |
| ADV | Adverb | toujours | 14 969 |
| COSUB | Subordinating conjunction | que | 3 007 |
| COCO | Coordinating Conjunction | et | 10 102 |
| PART | Demonstrative particle | -t | 93 |
| PRON | Pronoun | qui ce quoi | 667 |
| PDEMMS | Singular Masculine Demonstrative Pronoun | ce | 1 950 |
| PDEMMP | Plurial Masculine Demonstrative Pronoun | ceux | 108 |
| PDEMFS | Singular Feminine Demonstrative Pronoun | cette | 1 004 |
| PDEMFP | Plurial Feminine Demonstrative Pronoun | celles | 53 |
| PINDMS | Singular Masculine Indefinite Pronoun | tout | 961 |
| PINDMP | Plurial Masculine Indefinite Pronoun | autres | 89 |
| PINDFS | Singular Feminine Indefinite Pronoun | chacune | 136 |
| PINDFP | Plurial Feminine Indefinite Pronoun | certaines | 31 |
| PROPN | Proper noun | houston | 22 135 |
| XFAMIL | Last name | levy | 6 449 |
| NUM | Numerical Adjectives | trentaine vingtaine | 67 |
| DINTMS | Masculine Numerical Adjectives | un | 4 254 |
| DINTFS | Feminine Numerical Adjectives | une | 3 543 |
| PPOBJMS | Singular Masculine Pronoun complements of objects | le lui | 1 425 |
| PPOBJMP | Plurial Masculine Pronoun complements of objects | eux y | 212 |
| PPOBJFS | Singular Feminine Pronoun complements of objects | moi la | 358 |
| PPOBJFP | Plurial Feminine Pronoun complements of objects | en y | 70 |
| PPER1S | Personal Pronoun First Person Singular | je | 571 |
| PPER2S | Personal Pronoun Second Person Singular | tu | 19 |
| PPER3MS | Personal Pronoun Third Person Masculine Singular | il | 3 938 |
| PPER3MP | Personal Pronoun Third Person Masculine Plurial | ils | 513 |
| PPER3FS | Personal Pronoun Third Person Feminine Singular | elle | 992 |
| PPER3FP | Personal Pronoun Third Person Feminine Plurial | elles | 121 |
| PREFS | Reflexive Pronouns First Person of Singular | me m' | 120 |
| PREF | Reflexive Pronouns Third Person of Singular | se s' | 2 337 |
| PREFP | Reflexive Pronouns First / Second Person of Plurial | nous vous | 686 |
| VERB | Verb | obtient | 21 131 |
| VPPMS | Singular Masculine Participle Past Verb | formulé | 6 275 |
| VPPMP | Plurial Masculine Participle Past Verb | classés | 1 352 |
| VPPFS | Singular Feminine Participle Past Verb | appelée | 2 434 |
| VPPFP | Plurial Feminine Participle Past Verb | sanctionnées | 813 |
| VPPRE | Present participle | étant | 2 |
| DET | Determinant | les l' | 25 206 |
| DETMS | Singular Masculine Determinant | les | 15 444 |
| DETFS | Singular Feminine Determinant | la | 10 978 |
| ADJ | Adjective | capable sérieux | 1 075 |
| ADJMS | Singular Masculine Adjective | grand important | 8 338 |
| ADJMP | Plurial Masculine Adjective | grands petits | 3 274 |
| ADJFS | Singular Feminine Adjective | franéaise petite | 8 004 |
| ADJFP | Plurial Feminine Adjective | légéres petites | 3 041 |
| NOUN | Noun | temps | 1 389 |
| NMS | Singular Masculine Noun | drapeau | 29 698 |
| NMP | Plurial Masculine Noun | journalistes | 10 882 |
| NFS | Singular Feminine Noun | téte | 25 414 |
| NFP | Plurial Feminine Noun | ondes | 7 448 |
| PREL | Relative Pronoun | qui dont | 2 976 |
| PRELMS | Singular Masculine Relative Pronoun | lequel | 94 |
| PRELMP | Plurial Masculine Relative Pronoun | lesquels | 29 |
| PRELFS | Singular Feminine Relative Pronoun | laquelle | 70 |
| PRELFP | Plurial Feminine Relative Pronoun | lesquelles | 25 |
| PINTFS | Singular Feminine Interrogative Pronoun | laquelle | 3 |
| INTJ | Interjection | merci bref | 75 |
| CHIF | Numbers | 1979 10 | 10 417 |
| SYM | Symbol | é % | 705 |
| YPFOR | Endpoint | . | 15 088 |
| PUNCT | Ponctuation | : , | 28 918 |
| MOTINC | Unknown words | Technology Lady | 2 022 |
| X | Typos & others | sfeir 3D statu | 175 |
### Data Splits
| | Train | Dev | Test |
|:------------------:|:------:|:------:|:-----:|
| # Docs | 14 449 | 1 476 | 416 |
| Avg # Tokens / Doc | 24.54 | 24.19 | 24.08 |
## Dataset Creation
### Curation Rationale
[Needs More Information]
### Source Data
#### Initial Data Collection and Normalization
[Needs More Information]
#### Who are the source language producers?
[Needs More Information]
### Annotations
#### Annotation process
[Needs More Information]
#### Who are the annotators?
[Needs More Information]
### Personal and Sensitive Information
The corpora is free of personal or sensitive information since it has been based on `Wikipedia` articles content.
## Considerations for Using the Data
### Social Impact of Dataset
[Needs More Information]
### Discussion of Biases
The nature of the corpora introduce various biases such as the names of the streets which are temporaly based and can therefore introduce named entity like author or event names. For example, street names such as `Rue Victor-Hugo` or `Rue Pasteur` doesn't exist before the 20's century in France.
### Other Known Limitations
[Needs More Information]
## Additional Information
### Dataset Curators
__ANTILLES__: Labrak Yanis, Dufour Richard
__UD_FRENCH-GSD__: de Marneffe Marie-Catherine, Guillaume Bruno, McDonald Ryan, Suhr Alane, Nivre Joakim, Grioni Matias, Dickerson Carly, Perrier Guy
__Universal Dependency__: Ryan McDonald, Joakim Nivre, Yvonne Quirmbach-Brundage, Yoav Goldberg, Dipanjan Das, Kuzman Ganchev, Keith Hall, Slav Petrov, Hao Zhang, Oscar Tackstrom, Claudia Bedini, Nuria Bertomeu Castello and Jungmee Lee
### Licensing Information
```plain
For the following languages
German, Spanish, French, Indonesian, Italian, Japanese, Korean and Brazilian
Portuguese
we will distinguish between two portions of the data.
1. The underlying text for sentences that were annotated. This data Google
asserts no ownership over and no copyright over. Some or all of these
sentences may be copyrighted in some jurisdictions. Where copyrighted,
Google collected these sentences under exceptions to copyright or implied
license rights. GOOGLE MAKES THEM AVAILABLE TO YOU 'AS IS', WITHOUT ANY
WARRANTY OF ANY KIND, WHETHER EXPRESS OR IMPLIED.
2. The annotations -- part-of-speech tags and dependency annotations. These are
made available under a CC BY-SA 4.0. GOOGLE MAKES
THEM AVAILABLE TO YOU 'AS IS', WITHOUT ANY WARRANTY OF ANY KIND, WHETHER
EXPRESS OR IMPLIED. See attached LICENSE file for the text of CC BY-NC-SA.
Portions of the German data were sampled from the CoNLL 2006 Tiger Treebank
data. Hans Uszkoreit graciously gave permission to use the underlying
sentences in this data as part of this release.
Any use of the data should reference the above plus:
Universal Dependency Annotation for Multilingual Parsing
Ryan McDonald, Joakim Nivre, Yvonne Quirmbach-Brundage, Yoav Goldberg,
Dipanjan Das, Kuzman Ganchev, Keith Hall, Slav Petrov, Hao Zhang,
Oscar Tackstrom, Claudia Bedini, Nuria Bertomeu Castello and Jungmee Lee
Proceedings of ACL 2013
```
### Citation Information
Please cite the following paper when using this model.
ANTILLES extended corpus:
```latex
@inproceedings{labrak:hal-03696042,
TITLE = {{ANTILLES: An Open French Linguistically Enriched Part-of-Speech Corpus}},
AUTHOR = {Labrak, Yanis and Dufour, Richard},
URL = {https://hal.archives-ouvertes.fr/hal-03696042},
BOOKTITLE = {{25th International Conference on Text, Speech and Dialogue (TSD)}},
ADDRESS = {Brno, Czech Republic},
PUBLISHER = {{Springer}},
YEAR = {2022},
MONTH = Sep,
KEYWORDS = {Part-of-speech corpus ; POS tagging ; Open tools ; Word embeddings ; Bi-LSTM ; CRF ; Transformers},
PDF = {https://hal.archives-ouvertes.fr/hal-03696042/file/ANTILLES_A_freNch_linguisTIcaLLy_Enriched_part_of_Speech_corpus.pdf},
HAL_ID = {hal-03696042},
HAL_VERSION = {v1},
}
```
UD_French-GSD corpora:
```latex
@misc{
universaldependencies,
title={UniversalDependencies/UD_French-GSD},
url={https://github.com/UniversalDependencies/UD_French-GSD}, journal={GitHub},
author={UniversalDependencies}
}
```
{U}niversal {D}ependency Annotation for Multilingual Parsing:
```latex
@inproceedings{mcdonald-etal-2013-universal,
title = "{U}niversal {D}ependency Annotation for Multilingual Parsing",
author = {McDonald, Ryan and
Nivre, Joakim and
Quirmbach-Brundage, Yvonne and
Goldberg, Yoav and
Das, Dipanjan and
Ganchev, Kuzman and
Hall, Keith and
Petrov, Slav and
Zhang, Hao and
T{\"a}ckstr{\"o}m, Oscar and
Bedini, Claudia and
Bertomeu Castell{\'o}, N{\'u}ria and
Lee, Jungmee},
booktitle = "Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = aug,
year = "2013",
address = "Sofia, Bulgaria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P13-2017",
pages = "92--97",
}
```
LIA TAGG:
```latex
@techreport{LIA_TAGG,
author = {Frédéric Béchet},
title = {LIA_TAGG: a statistical POS tagger + syntactic bracketer},
institution = {Aix-Marseille University & CNRS},
year = {2001}
}
```
|