craigmacdonald commited on
Commit
5aa458f
·
verified ·
1 Parent(s): 4e5d065

Upload ragwiki_indexing-terrier.ipynb

Browse files
Files changed (1) hide show
  1. ragwiki_indexing-terrier.ipynb +202 -0
ragwiki_indexing-terrier.ipynb ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "# Sparse Index for RAG Wikipedia Corpus\n",
8
+ "\n",
9
+ "This creates a sparse Terrier index using PyTerrier for the Wikipedia corpus used by Natural Questions and TextbookQuestionAnswering.\n",
10
+ "\n",
11
+ "The corpus is downloaded from https://huggingface.co/datasets/RUC-NLPIR/FlashRAG_datasets/resolve/main/retrieval-corpus/wiki18_100w.zip by `\n",
12
+ "pt.get_dataset('rag:nq_wiki').get_corpus_iter()`.\n",
13
+ "\n"
14
+ ]
15
+ },
16
+ {
17
+ "cell_type": "code",
18
+ "execution_count": 1,
19
+ "metadata": {},
20
+ "outputs": [],
21
+ "source": [
22
+ "import pyterrier as pt\n",
23
+ "import pyterrier_rag"
24
+ ]
25
+ },
26
+ {
27
+ "cell_type": "markdown",
28
+ "metadata": {},
29
+ "source": [
30
+ "This notebook requires PyTerrier 0.13 or higher."
31
+ ]
32
+ },
33
+ {
34
+ "cell_type": "code",
35
+ "execution_count": 2,
36
+ "metadata": {},
37
+ "outputs": [
38
+ {
39
+ "data": {
40
+ "text/plain": [
41
+ "'0.13.0'"
42
+ ]
43
+ },
44
+ "execution_count": 2,
45
+ "metadata": {},
46
+ "output_type": "execute_result"
47
+ }
48
+ ],
49
+ "source": [
50
+ "pt.__version__"
51
+ ]
52
+ },
53
+ {
54
+ "cell_type": "markdown",
55
+ "metadata": {},
56
+ "source": [
57
+ "Lets prepare the index. We're going to store the title and text of the documents in the Terrier index, so we can use them for reranking. A study of title and text length distributions found that very few were cutoff with for max lengths of 1750 and 125, respectively.\n"
58
+ ]
59
+ },
60
+ {
61
+ "cell_type": "code",
62
+ "execution_count": 34,
63
+ "metadata": {},
64
+ "outputs": [
65
+ {
66
+ "name": "stdout",
67
+ "output_type": "stream",
68
+ "text": [
69
+ "13:45:49.361 [ForkJoinPool-2-worker-3] WARN org.terrier.structures.BaseCompressingMetaIndex -- Structure meta reading lookup file directly from disk (SLOW) - try index.meta.index-source=fileinmem in the index properties file. 137.3 MiB of memory would be required.\n",
70
+ "13:45:49.366 [ForkJoinPool-2-worker-3] WARN org.terrier.structures.BaseCompressingMetaIndex -- Structure meta reading data file directly from disk (SLOW) - try index.meta.data-source=fileinmem in the index properties file. 7 GiB of memory would be required.\n",
71
+ "13:56:25.302 [ForkJoinPool-2-worker-3] WARN org.terrier.structures.BaseCompressingMetaIndex -- Structure meta reading data file directly from disk (SLOW) - try index.meta.data-source=fileinmem in the index properties file. 1.2 GiB of memory would be required.\n"
72
+ ]
73
+ },
74
+ {
75
+ "data": {
76
+ "text/plain": [
77
+ "<org.terrier.querying.IndexRef at 0x7fa3d024d5b0 jclass=org/terrier/querying/IndexRef jself=<LocalRef obj=0xc526808 at 0x7fa274037470>>"
78
+ ]
79
+ },
80
+ "execution_count": 34,
81
+ "metadata": {},
82
+ "output_type": "execute_result"
83
+ }
84
+ ],
85
+ "source": [
86
+ "index_dir = \"./nq_index_new\"\n",
87
+ "ref = pt.IterDictIndexer(\n",
88
+ " index_dir, \n",
89
+ " text_attrs=['title', 'text'], \n",
90
+ " meta={'docno' : 20, 'text' : 1750, 'title' : 125}\n",
91
+ " ).index(pt.get_dataset('rag:nq_wiki').get_corpus_iter())"
92
+ ]
93
+ },
94
+ {
95
+ "cell_type": "markdown",
96
+ "metadata": {},
97
+ "source": [
98
+ "We then upload the index to Huggingface..."
99
+ ]
100
+ },
101
+ {
102
+ "cell_type": "code",
103
+ "execution_count": 6,
104
+ "metadata": {},
105
+ "outputs": [
106
+ {
107
+ "name": "stdout",
108
+ "output_type": "stream",
109
+ "text": [
110
+ "adding data.direct.bf [1.9 GB]\n",
111
+ "adding data.document.fsarrayfile [340.7 MB]\n",
112
+ "adding data.inverted.bf [1.5 GB]\n",
113
+ "adding data.lexicon.fsomapfile [330.0 MB]\n",
114
+ "adding data.lexicon.fsomaphash [1017 B]\n",
115
+ "adding data.lexicon.fsomapid [15.3 MB]\n",
116
+ "adding data.meta-0.fsomapfile [1.3 GB]\n",
117
+ "adding data.meta.idx [160.3 MB]\n",
118
+ "adding data.meta.zdata [8.2 GB]\n",
119
+ "adding data.properties [4.1 KB]\n",
120
+ "adding pt_meta.json [79 B]\n"
121
+ ]
122
+ },
123
+ {
124
+ "data": {
125
+ "application/vnd.jupyter.widget-view+json": {
126
+ "model_id": "d807844944c94c4cb5b76e1472d062f8",
127
+ "version_major": 2,
128
+ "version_minor": 0
129
+ },
130
+ "text/plain": [
131
+ "artifact.tar.lz4.json: 0%| | 0.00/913 [00:00<?, ?B/s]"
132
+ ]
133
+ },
134
+ "metadata": {},
135
+ "output_type": "display_data"
136
+ },
137
+ {
138
+ "data": {
139
+ "application/vnd.jupyter.widget-view+json": {
140
+ "model_id": "8477f74a10114db0ab4c62be17d21385",
141
+ "version_major": 2,
142
+ "version_minor": 0
143
+ },
144
+ "text/plain": [
145
+ "artifact.tar.lz4: 0%| | 0.00/12.9G [00:00<?, ?B/s]"
146
+ ]
147
+ },
148
+ "metadata": {},
149
+ "output_type": "display_data"
150
+ },
151
+ {
152
+ "data": {
153
+ "application/vnd.jupyter.widget-view+json": {
154
+ "model_id": "b7082bc99c9a439dbb6ed8ab9fc484a1",
155
+ "version_major": 2,
156
+ "version_minor": 0
157
+ },
158
+ "text/plain": [
159
+ "Upload 2 LFS files: 0%| | 0/2 [00:00<?, ?it/s]"
160
+ ]
161
+ },
162
+ "metadata": {},
163
+ "output_type": "display_data"
164
+ },
165
+ {
166
+ "name": "stderr",
167
+ "output_type": "stream",
168
+ "text": [
169
+ "\n",
170
+ "Artifact uploaded to https://huggingface.co/datasets/pyterrier/ragwiki-terrier/tree/main/\n",
171
+ "Consider editing the README.md to help explain this artifact to others.\n"
172
+ ]
173
+ }
174
+ ],
175
+ "source": [
176
+ "index = pt.terrier.TerrierIndex(ref)\n",
177
+ "index.to_hf('pyterrier/ragwiki-terrier')"
178
+ ]
179
+ }
180
+ ],
181
+ "metadata": {
182
+ "kernelspec": {
183
+ "display_name": "Python [conda env:rag]",
184
+ "language": "python",
185
+ "name": "conda-env-rag-py"
186
+ },
187
+ "language_info": {
188
+ "codemirror_mode": {
189
+ "name": "ipython",
190
+ "version": 3
191
+ },
192
+ "file_extension": ".py",
193
+ "mimetype": "text/x-python",
194
+ "name": "python",
195
+ "nbconvert_exporter": "python",
196
+ "pygments_lexer": "ipython3",
197
+ "version": "3.11.11"
198
+ }
199
+ },
200
+ "nbformat": 4,
201
+ "nbformat_minor": 4
202
+ }