File size: 1,957 Bytes
81fa43e
f4d61db
 
 
 
 
 
 
 
 
81fa43e
f4d61db
81fa43e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4d61db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e46d9ab
 
 
 
81fa43e
 
 
 
 
f4d61db
 
 
 
015a46e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
---
language:
- en
license: cc0-1.0
size_categories:
- 1K<n<10K
source_datasets: storytracer/LoC-PD-Books
task_categories:
- text-generation
- feature-extraction
dataset_info:
- config_name: default
  features:
  - name: lccn
    dtype: string
  - name: title
    dtype: string
  - name: author
    dtype: string
  - name: year
    dtype: int64
  - name: page_count
    dtype: int64
  - name: filename
    dtype: string
  - name: text
    dtype: string
  - name: label
    dtype: string
  - name: score
    dtype: float64
  splits:
  - name: train
    num_bytes: 2788098633.628336
    num_examples: 8816
  download_size: 1435586557
  dataset_size: 2788098633.628336
- config_name: en-clean
  features:
  - name: lccn
    dtype: string
  - name: title
    dtype: string
  - name: author
    dtype: string
  - name: year
    dtype: int64
  - name: page_count
    dtype: int64
  - name: filename
    dtype: string
  - name: text
    dtype: string
  - name: score
    dtype: float64
  splits:
  - name: train
    num_bytes: 1906155961.9587114
    num_examples: 6399
  download_size: 1055862380
  dataset_size: 1906155961.9587114
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
- config_name: en-clean
  data_files:
  - split: train
    path: en-clean/train-*
tags:
- books
---


# LoC-PD-Books: preprocessed


This is the `storytracer/LoC-PD-Books` dataset with the following preprocessing steps:

- apply [clean-text](https://pypi.org/project/clean-text/) package keeping casing and newlines
- drop OCR garbled text in first few lines of each example
- fix (most) 'hard' newlines w/ regex similar to [gutenberg clean](https://huggingface.co/datasets/BEE-spoke-data/gutenberg-en-v1-clean)
- 'grade' first 512 tokens of each book with [this quantized model](https://huggingface.co/pszemraj/gibberish_detector_onnx-quant-avx512_vnni); keep examples from labels `clean` (all) and `mild gibberish` w/ score 0.9 or higher

---