pscotti commited on
Commit
fd2d712
1 Parent(s): c781f5b

Delete train_logs

Browse files
Files changed (24) hide show
  1. train_logs/final_multisubject_subj01/last/last.npy +0 -3
  2. train_logs/final_multisubject_subj01/last/mp_rank_00_model_states.pt +0 -3
  3. train_logs/final_multisubject_subj01/last/zero_pp_rank_0_mp_rank_00_optim_states.pt +0 -3
  4. train_logs/final_multisubject_subj01/last/zero_pp_rank_1_mp_rank_00_optim_states.pt +0 -3
  5. train_logs/final_multisubject_subj01/last/zero_pp_rank_2_mp_rank_00_optim_states.pt +0 -3
  6. train_logs/final_multisubject_subj01/last/zero_pp_rank_3_mp_rank_00_optim_states.pt +0 -3
  7. train_logs/final_multisubject_subj01/last/zero_pp_rank_4_mp_rank_00_optim_states.pt +0 -3
  8. train_logs/final_multisubject_subj01/last/zero_pp_rank_5_mp_rank_00_optim_states.pt +0 -3
  9. train_logs/final_multisubject_subj01/last/zero_pp_rank_6_mp_rank_00_optim_states.pt +0 -3
  10. train_logs/final_multisubject_subj01/last/zero_pp_rank_7_mp_rank_00_optim_states.pt +0 -3
  11. train_logs/final_multisubject_subj01/latest +0 -1
  12. train_logs/final_multisubject_subj01/zero_to_fp32.py +0 -587
  13. train_logs/final_multisubject_subj02/last/last.npy +0 -3
  14. train_logs/final_multisubject_subj02/last/mp_rank_00_model_states.pt +0 -3
  15. train_logs/final_multisubject_subj02/last/zero_pp_rank_0_mp_rank_00_optim_states.pt +0 -3
  16. train_logs/final_multisubject_subj02/last/zero_pp_rank_1_mp_rank_00_optim_states.pt +0 -3
  17. train_logs/final_multisubject_subj02/last/zero_pp_rank_2_mp_rank_00_optim_states.pt +0 -3
  18. train_logs/final_multisubject_subj02/last/zero_pp_rank_3_mp_rank_00_optim_states.pt +0 -3
  19. train_logs/final_multisubject_subj02/last/zero_pp_rank_4_mp_rank_00_optim_states.pt +0 -3
  20. train_logs/final_multisubject_subj02/last/zero_pp_rank_5_mp_rank_00_optim_states.pt +0 -3
  21. train_logs/final_multisubject_subj02/last/zero_pp_rank_6_mp_rank_00_optim_states.pt +0 -3
  22. train_logs/final_multisubject_subj02/last/zero_pp_rank_7_mp_rank_00_optim_states.pt +0 -3
  23. train_logs/final_multisubject_subj02/latest +0 -1
  24. train_logs/final_multisubject_subj02/zero_to_fp32.py +0 -587
train_logs/final_multisubject_subj01/last/last.npy DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:44f9227deaf8d172eccd4257d726156474468021515dd7b8d69ea7d2feb34d3d
3
- size 161040
 
 
 
 
train_logs/final_multisubject_subj01/last/mp_rank_00_model_states.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:0abeff552c358dc1df3359fc2c8266a43034e43b079eeddbd70ad43890bc5b81
3
- size 5150612626
 
 
 
 
train_logs/final_multisubject_subj01/last/zero_pp_rank_0_mp_rank_00_optim_states.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:d9f14cfb8d950e81e7f44291701005c33631230f35649dc4f7c1f5031bd838c1
3
- size 3862906742
 
 
 
 
train_logs/final_multisubject_subj01/last/zero_pp_rank_1_mp_rank_00_optim_states.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:e15e171fbf782d9b4139a5c6b3d8e25d485671bd0dac469bc381970f3edec910
3
- size 3862902582
 
 
 
 
train_logs/final_multisubject_subj01/last/zero_pp_rank_2_mp_rank_00_optim_states.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:db42ebb4ced50b7d6a5249ee7e508a0d34cd60e057dcc183acf14cacfb8dbf07
3
- size 3862902902
 
 
 
 
train_logs/final_multisubject_subj01/last/zero_pp_rank_3_mp_rank_00_optim_states.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:9e1b7f8376520bc50e2452e071842d1db1552553de3e60b4444db95a8b00c9c8
3
- size 3862903094
 
 
 
 
train_logs/final_multisubject_subj01/last/zero_pp_rank_4_mp_rank_00_optim_states.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:e158699f70d31bbafcdc29a6fd0e2832083de8fca2fda8a58d5de46d35a802ea
3
- size 3862902966
 
 
 
 
train_logs/final_multisubject_subj01/last/zero_pp_rank_5_mp_rank_00_optim_states.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:d11daf6d80f0f30600f07a41bb56ee23c68780ee957a96ccb029acc92d4a6358
3
- size 3862903158
 
 
 
 
train_logs/final_multisubject_subj01/last/zero_pp_rank_6_mp_rank_00_optim_states.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:931376b8c932cd96e0bc890785b664945579e7dd4f1729d32c0b841df8c19c4a
3
- size 3862903094
 
 
 
 
train_logs/final_multisubject_subj01/last/zero_pp_rank_7_mp_rank_00_optim_states.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:c554f83f1b2f2088a9c2b972aaf719b38c41fd3770afacd5dfbcb8e74d9d5fb4
3
- size 3862912118
 
 
 
 
train_logs/final_multisubject_subj01/latest DELETED
@@ -1 +0,0 @@
1
- last
 
 
train_logs/final_multisubject_subj01/zero_to_fp32.py DELETED
@@ -1,587 +0,0 @@
1
- #!/usr/bin/env python
2
-
3
- # Copyright (c) Microsoft Corporation.
4
- # SPDX-License-Identifier: Apache-2.0
5
-
6
- # DeepSpeed Team
7
-
8
- # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
- # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
- # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
- # application.
12
- #
13
- # example: python zero_to_fp32.py . pytorch_model.bin
14
-
15
- import argparse
16
- import torch
17
- import glob
18
- import math
19
- import os
20
- import re
21
- from collections import OrderedDict
22
- from dataclasses import dataclass
23
-
24
- # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
- # DeepSpeed data structures it has to be available in the current python environment.
26
- from deepspeed.utils import logger
27
- from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
- FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
- FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
-
31
-
32
- @dataclass
33
- class zero_model_state:
34
- buffers: dict()
35
- param_shapes: dict()
36
- shared_params: list
37
- ds_version: int
38
- frozen_param_shapes: dict()
39
- frozen_param_fragments: dict()
40
-
41
-
42
- debug = 0
43
-
44
- # load to cpu
45
- device = torch.device('cpu')
46
-
47
-
48
- def atoi(text):
49
- return int(text) if text.isdigit() else text
50
-
51
-
52
- def natural_keys(text):
53
- '''
54
- alist.sort(key=natural_keys) sorts in human order
55
- http://nedbatchelder.com/blog/200712/human_sorting.html
56
- (See Toothy's implementation in the comments)
57
- '''
58
- return [atoi(c) for c in re.split(r'(\d+)', text)]
59
-
60
-
61
- def get_model_state_file(checkpoint_dir, zero_stage):
62
- if not os.path.isdir(checkpoint_dir):
63
- raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
-
65
- # there should be only one file
66
- if zero_stage <= 2:
67
- file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
- elif zero_stage == 3:
69
- file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
-
71
- if not os.path.exists(file):
72
- raise FileNotFoundError(f"can't find model states file at '{file}'")
73
-
74
- return file
75
-
76
-
77
- def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
- # XXX: need to test that this simple glob rule works for multi-node setup too
79
- ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
-
81
- if len(ckpt_files) == 0:
82
- raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
-
84
- return ckpt_files
85
-
86
-
87
- def get_optim_files(checkpoint_dir):
88
- return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
-
90
-
91
- def get_model_state_files(checkpoint_dir):
92
- return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
-
94
-
95
- def parse_model_states(files):
96
- zero_model_states = []
97
- for file in files:
98
- state_dict = torch.load(file, map_location=device)
99
-
100
- if BUFFER_NAMES not in state_dict:
101
- raise ValueError(f"{file} is not a model state checkpoint")
102
- buffer_names = state_dict[BUFFER_NAMES]
103
- if debug:
104
- print("Found buffers:", buffer_names)
105
-
106
- # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
- buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
- param_shapes = state_dict[PARAM_SHAPES]
109
-
110
- # collect parameters that are included in param_shapes
111
- param_names = []
112
- for s in param_shapes:
113
- for name in s.keys():
114
- param_names.append(name)
115
-
116
- # update with frozen parameters
117
- frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
- if frozen_param_shapes is not None:
119
- if debug:
120
- print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
- param_names += list(frozen_param_shapes.keys())
122
-
123
- # handle shared params
124
- shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
-
126
- ds_version = state_dict.get(DS_VERSION, None)
127
-
128
- frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
-
130
- z_model_state = zero_model_state(buffers=buffers,
131
- param_shapes=param_shapes,
132
- shared_params=shared_params,
133
- ds_version=ds_version,
134
- frozen_param_shapes=frozen_param_shapes,
135
- frozen_param_fragments=frozen_param_fragments)
136
- zero_model_states.append(z_model_state)
137
-
138
- return zero_model_states
139
-
140
-
141
- def parse_optim_states(files, ds_checkpoint_dir):
142
-
143
- total_files = len(files)
144
- state_dicts = []
145
- for f in files:
146
- state_dict = torch.load(f, map_location=device)
147
- # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
- # and also handle the case where it was already removed by another helper script
149
- state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
- state_dicts.append(state_dict)
151
-
152
- if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
- raise ValueError(f"{files[0]} is not a zero checkpoint")
154
- zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
- world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
-
157
- # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
- # parameters can be different from data parallelism for non-expert parameters. So we can just
159
- # use the max of the partition_count to get the dp world_size.
160
-
161
- if type(world_size) is list:
162
- world_size = max(world_size)
163
-
164
- if world_size != total_files:
165
- raise ValueError(
166
- f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
- "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
- )
169
-
170
- # the groups are named differently in each stage
171
- if zero_stage <= 2:
172
- fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
- elif zero_stage == 3:
174
- fp32_groups_key = FP32_FLAT_GROUPS
175
- else:
176
- raise ValueError(f"unknown zero stage {zero_stage}")
177
-
178
- if zero_stage <= 2:
179
- fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
- elif zero_stage == 3:
181
- # if there is more than one param group, there will be multiple flattened tensors - one
182
- # flattened tensor per group - for simplicity merge them into a single tensor
183
- #
184
- # XXX: could make the script more memory efficient for when there are multiple groups - it
185
- # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
-
187
- fp32_flat_groups = [
188
- torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
- ]
190
-
191
- return zero_stage, world_size, fp32_flat_groups
192
-
193
-
194
- def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
195
- """
196
- Returns fp32 state_dict reconstructed from ds checkpoint
197
-
198
- Args:
199
- - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
-
201
- """
202
- print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
-
204
- optim_files = get_optim_files(ds_checkpoint_dir)
205
- zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
- print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
-
208
- model_files = get_model_state_files(ds_checkpoint_dir)
209
-
210
- zero_model_states = parse_model_states(model_files)
211
- print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
-
213
- if zero_stage <= 2:
214
- return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
215
- elif zero_stage == 3:
216
- return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
217
-
218
-
219
- def _zero2_merge_frozen_params(state_dict, zero_model_states):
220
- if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
221
- return
222
-
223
- frozen_param_shapes = zero_model_states[0].frozen_param_shapes
224
- frozen_param_fragments = zero_model_states[0].frozen_param_fragments
225
-
226
- if debug:
227
- num_elem = sum(s.numel() for s in frozen_param_shapes.values())
228
- print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
229
-
230
- wanted_params = len(frozen_param_shapes)
231
- wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
232
- avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
233
- print(f'Frozen params: Have {avail_numel} numels to process.')
234
- print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
235
-
236
- total_params = 0
237
- total_numel = 0
238
- for name, shape in frozen_param_shapes.items():
239
- total_params += 1
240
- unpartitioned_numel = shape.numel()
241
- total_numel += unpartitioned_numel
242
-
243
- state_dict[name] = frozen_param_fragments[name]
244
-
245
- if debug:
246
- print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
247
-
248
- print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
249
-
250
-
251
- def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
252
- param_shapes = zero_model_states[0].param_shapes
253
-
254
- # Reconstruction protocol:
255
- #
256
- # XXX: document this
257
-
258
- if debug:
259
- for i in range(world_size):
260
- for j in range(len(fp32_flat_groups[0])):
261
- print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
262
-
263
- # XXX: memory usage doubles here (zero2)
264
- num_param_groups = len(fp32_flat_groups[0])
265
- merged_single_partition_of_fp32_groups = []
266
- for i in range(num_param_groups):
267
- merged_partitions = [sd[i] for sd in fp32_flat_groups]
268
- full_single_fp32_vector = torch.cat(merged_partitions, 0)
269
- merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
270
- avail_numel = sum(
271
- [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
272
-
273
- if debug:
274
- wanted_params = sum([len(shapes) for shapes in param_shapes])
275
- wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
276
- # not asserting if there is a mismatch due to possible padding
277
- print(f"Have {avail_numel} numels to process.")
278
- print(f"Need {wanted_numel} numels in {wanted_params} params.")
279
-
280
- # params
281
- # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
282
- # out-of-core computing solution
283
- total_numel = 0
284
- total_params = 0
285
- for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
286
- offset = 0
287
- avail_numel = full_single_fp32_vector.numel()
288
- for name, shape in shapes.items():
289
-
290
- unpartitioned_numel = shape.numel()
291
- total_numel += unpartitioned_numel
292
- total_params += 1
293
-
294
- if debug:
295
- print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
296
- state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
297
- offset += unpartitioned_numel
298
-
299
- # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
300
- # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
301
- # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
302
- # live optimizer object, so we are checking that the numbers are within the right range
303
- align_to = 2 * world_size
304
-
305
- def zero2_align(x):
306
- return align_to * math.ceil(x / align_to)
307
-
308
- if debug:
309
- print(f"original offset={offset}, avail_numel={avail_numel}")
310
-
311
- offset = zero2_align(offset)
312
- avail_numel = zero2_align(avail_numel)
313
-
314
- if debug:
315
- print(f"aligned offset={offset}, avail_numel={avail_numel}")
316
-
317
- # Sanity check
318
- if offset != avail_numel:
319
- raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
320
-
321
- print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
322
-
323
-
324
- def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
325
- state_dict = OrderedDict()
326
-
327
- # buffers
328
- buffers = zero_model_states[0].buffers
329
- state_dict.update(buffers)
330
- if debug:
331
- print(f"added {len(buffers)} buffers")
332
-
333
- _zero2_merge_frozen_params(state_dict, zero_model_states)
334
-
335
- _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
336
-
337
- # recover shared parameters
338
- for pair in zero_model_states[0].shared_params:
339
- if pair[1] in state_dict:
340
- state_dict[pair[0]] = state_dict[pair[1]]
341
-
342
- return state_dict
343
-
344
-
345
- def zero3_partitioned_param_info(unpartitioned_numel, world_size):
346
- remainder = unpartitioned_numel % world_size
347
- padding_numel = (world_size - remainder) if remainder else 0
348
- partitioned_numel = math.ceil(unpartitioned_numel / world_size)
349
- return partitioned_numel, padding_numel
350
-
351
-
352
- def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
353
- if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
354
- return
355
-
356
- if debug:
357
- for i in range(world_size):
358
- num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
359
- print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
360
-
361
- frozen_param_shapes = zero_model_states[0].frozen_param_shapes
362
- wanted_params = len(frozen_param_shapes)
363
- wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
364
- avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
365
- print(f'Frozen params: Have {avail_numel} numels to process.')
366
- print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
367
-
368
- total_params = 0
369
- total_numel = 0
370
- for name, shape in zero_model_states[0].frozen_param_shapes.items():
371
- total_params += 1
372
- unpartitioned_numel = shape.numel()
373
- total_numel += unpartitioned_numel
374
-
375
- param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
376
- state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
377
-
378
- partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
379
-
380
- if debug:
381
- print(
382
- f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
383
- )
384
-
385
- print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
386
-
387
-
388
- def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
389
- param_shapes = zero_model_states[0].param_shapes
390
- avail_numel = fp32_flat_groups[0].numel() * world_size
391
- # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
392
- # param, re-consolidating each param, while dealing with padding if any
393
-
394
- # merge list of dicts, preserving order
395
- param_shapes = {k: v for d in param_shapes for k, v in d.items()}
396
-
397
- if debug:
398
- for i in range(world_size):
399
- print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
400
-
401
- wanted_params = len(param_shapes)
402
- wanted_numel = sum(shape.numel() for shape in param_shapes.values())
403
- # not asserting if there is a mismatch due to possible padding
404
- avail_numel = fp32_flat_groups[0].numel() * world_size
405
- print(f"Trainable params: Have {avail_numel} numels to process.")
406
- print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
407
-
408
- # params
409
- # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
410
- # out-of-core computing solution
411
- offset = 0
412
- total_numel = 0
413
- total_params = 0
414
- for name, shape in param_shapes.items():
415
-
416
- unpartitioned_numel = shape.numel()
417
- total_numel += unpartitioned_numel
418
- total_params += 1
419
-
420
- partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
421
-
422
- if debug:
423
- print(
424
- f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
425
- )
426
-
427
- # XXX: memory usage doubles here
428
- state_dict[name] = torch.cat(
429
- tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
430
- 0).narrow(0, 0, unpartitioned_numel).view(shape)
431
- offset += partitioned_numel
432
-
433
- offset *= world_size
434
-
435
- # Sanity check
436
- if offset != avail_numel:
437
- raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
438
-
439
- print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
440
-
441
-
442
- def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
443
- state_dict = OrderedDict()
444
-
445
- # buffers
446
- buffers = zero_model_states[0].buffers
447
- state_dict.update(buffers)
448
- if debug:
449
- print(f"added {len(buffers)} buffers")
450
-
451
- _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
452
-
453
- _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
454
-
455
- # recover shared parameters
456
- for pair in zero_model_states[0].shared_params:
457
- if pair[1] in state_dict:
458
- state_dict[pair[0]] = state_dict[pair[1]]
459
-
460
- return state_dict
461
-
462
-
463
- def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
464
- """
465
- Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
466
- ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
467
- via a model hub.
468
-
469
- Args:
470
- - ``checkpoint_dir``: path to the desired checkpoint folder
471
- - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
472
-
473
- Returns:
474
- - pytorch ``state_dict``
475
-
476
- Note: this approach may not work if your application doesn't have sufficient free CPU memory and
477
- you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
478
- the checkpoint.
479
-
480
- A typical usage might be ::
481
-
482
- from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
483
- # do the training and checkpoint saving
484
- state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
485
- model = model.cpu() # move to cpu
486
- model.load_state_dict(state_dict)
487
- # submit to model hub or save the model to share with others
488
-
489
- In this example the ``model`` will no longer be usable in the deepspeed context of the same
490
- application. i.e. you will need to re-initialize the deepspeed engine, since
491
- ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
492
-
493
- If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
494
-
495
- """
496
- if tag is None:
497
- latest_path = os.path.join(checkpoint_dir, 'latest')
498
- if os.path.isfile(latest_path):
499
- with open(latest_path, 'r') as fd:
500
- tag = fd.read().strip()
501
- else:
502
- raise ValueError(f"Unable to find 'latest' file at {latest_path}")
503
-
504
- ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
505
-
506
- if not os.path.isdir(ds_checkpoint_dir):
507
- raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
508
-
509
- return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
510
-
511
-
512
- def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
513
- """
514
- Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
515
- loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
516
-
517
- Args:
518
- - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
519
- - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
520
- - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
521
- """
522
-
523
- state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
524
- print(f"Saving fp32 state dict to {output_file}")
525
- torch.save(state_dict, output_file)
526
-
527
-
528
- def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
529
- """
530
- 1. Put the provided model to cpu
531
- 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
532
- 3. Load it into the provided model
533
-
534
- Args:
535
- - ``model``: the model object to update
536
- - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
537
- - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
538
-
539
- Returns:
540
- - ``model`: modified model
541
-
542
- Make sure you have plenty of CPU memory available before you call this function. If you don't
543
- have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
544
- conveniently placed for you in the checkpoint folder.
545
-
546
- A typical usage might be ::
547
-
548
- from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
549
- model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
550
- # submit to model hub or save the model to share with others
551
-
552
- Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
553
- of the same application. i.e. you will need to re-initialize the deepspeed engine, since
554
- ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
555
-
556
- """
557
- logger.info(f"Extracting fp32 weights")
558
- state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
559
-
560
- logger.info(f"Overwriting model with fp32 weights")
561
- model = model.cpu()
562
- model.load_state_dict(state_dict, strict=False)
563
-
564
- return model
565
-
566
-
567
- if __name__ == "__main__":
568
-
569
- parser = argparse.ArgumentParser()
570
- parser.add_argument("checkpoint_dir",
571
- type=str,
572
- help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
573
- parser.add_argument(
574
- "output_file",
575
- type=str,
576
- help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
577
- parser.add_argument("-t",
578
- "--tag",
579
- type=str,
580
- default=None,
581
- help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
582
- parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
583
- args = parser.parse_args()
584
-
585
- debug = args.debug
586
-
587
- convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
train_logs/final_multisubject_subj02/last/last.npy DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:95e4dd2ae0a6dac5b7ccdf9a858a37e46f49a5155167651524d7cd17d1682d39
3
- size 159688
 
 
 
 
train_logs/final_multisubject_subj02/last/mp_rank_00_model_states.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:1d5a6c776a675349e4ca2d6450126ff8ea3a9aab753d537e8dde313b5630f128
3
- size 5162458258
 
 
 
 
train_logs/final_multisubject_subj02/last/zero_pp_rank_0_mp_rank_00_optim_states.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:3473b5d8760e175ecedf8f887e635aa28dcb1cde9fdf9d045fb44d33e5f63c65
3
- size 3871790966
 
 
 
 
train_logs/final_multisubject_subj02/last/zero_pp_rank_1_mp_rank_00_optim_states.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:a57c3c04d51e95e8635272e30de994b56537bd5768bca2acfa258968b4cec7b5
3
- size 3871786806
 
 
 
 
train_logs/final_multisubject_subj02/last/zero_pp_rank_2_mp_rank_00_optim_states.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:812341b807e3bc10991e1305fb495c7a9560a2e0f8b6c2b18f870394c9ddc04e
3
- size 3871787126
 
 
 
 
train_logs/final_multisubject_subj02/last/zero_pp_rank_3_mp_rank_00_optim_states.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:463ae559572562775668dc4603781e25c7bb78b60d4316987e85ff1b21d5242a
3
- size 3871787318
 
 
 
 
train_logs/final_multisubject_subj02/last/zero_pp_rank_4_mp_rank_00_optim_states.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:8250e5e2a3890e46b418cc7f29c594ff4dd0f5013f7e69878475335d06879fdb
3
- size 3871787190
 
 
 
 
train_logs/final_multisubject_subj02/last/zero_pp_rank_5_mp_rank_00_optim_states.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:e421ed6d5b6fb75f9a24660e306f705b53ec714a991f16a44b62fca460ac6c43
3
- size 3871787382
 
 
 
 
train_logs/final_multisubject_subj02/last/zero_pp_rank_6_mp_rank_00_optim_states.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:a64f991da280dfc98f33c02c959429cf5ee3f07ca4a43443aeee6bb508922e53
3
- size 3871787318
 
 
 
 
train_logs/final_multisubject_subj02/last/zero_pp_rank_7_mp_rank_00_optim_states.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:54bd6884377b0105c929c6969d6967988a857f1e219b333c6b61b5dbb7bf241c
3
- size 3871796342
 
 
 
 
train_logs/final_multisubject_subj02/latest DELETED
@@ -1 +0,0 @@
1
- last
 
 
train_logs/final_multisubject_subj02/zero_to_fp32.py DELETED
@@ -1,587 +0,0 @@
1
- #!/usr/bin/env python
2
-
3
- # Copyright (c) Microsoft Corporation.
4
- # SPDX-License-Identifier: Apache-2.0
5
-
6
- # DeepSpeed Team
7
-
8
- # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
- # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
- # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
- # application.
12
- #
13
- # example: python zero_to_fp32.py . pytorch_model.bin
14
-
15
- import argparse
16
- import torch
17
- import glob
18
- import math
19
- import os
20
- import re
21
- from collections import OrderedDict
22
- from dataclasses import dataclass
23
-
24
- # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
- # DeepSpeed data structures it has to be available in the current python environment.
26
- from deepspeed.utils import logger
27
- from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
- FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
- FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
-
31
-
32
- @dataclass
33
- class zero_model_state:
34
- buffers: dict()
35
- param_shapes: dict()
36
- shared_params: list
37
- ds_version: int
38
- frozen_param_shapes: dict()
39
- frozen_param_fragments: dict()
40
-
41
-
42
- debug = 0
43
-
44
- # load to cpu
45
- device = torch.device('cpu')
46
-
47
-
48
- def atoi(text):
49
- return int(text) if text.isdigit() else text
50
-
51
-
52
- def natural_keys(text):
53
- '''
54
- alist.sort(key=natural_keys) sorts in human order
55
- http://nedbatchelder.com/blog/200712/human_sorting.html
56
- (See Toothy's implementation in the comments)
57
- '''
58
- return [atoi(c) for c in re.split(r'(\d+)', text)]
59
-
60
-
61
- def get_model_state_file(checkpoint_dir, zero_stage):
62
- if not os.path.isdir(checkpoint_dir):
63
- raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
-
65
- # there should be only one file
66
- if zero_stage <= 2:
67
- file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
- elif zero_stage == 3:
69
- file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
-
71
- if not os.path.exists(file):
72
- raise FileNotFoundError(f"can't find model states file at '{file}'")
73
-
74
- return file
75
-
76
-
77
- def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
- # XXX: need to test that this simple glob rule works for multi-node setup too
79
- ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
-
81
- if len(ckpt_files) == 0:
82
- raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
-
84
- return ckpt_files
85
-
86
-
87
- def get_optim_files(checkpoint_dir):
88
- return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
-
90
-
91
- def get_model_state_files(checkpoint_dir):
92
- return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
-
94
-
95
- def parse_model_states(files):
96
- zero_model_states = []
97
- for file in files:
98
- state_dict = torch.load(file, map_location=device)
99
-
100
- if BUFFER_NAMES not in state_dict:
101
- raise ValueError(f"{file} is not a model state checkpoint")
102
- buffer_names = state_dict[BUFFER_NAMES]
103
- if debug:
104
- print("Found buffers:", buffer_names)
105
-
106
- # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
- buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
- param_shapes = state_dict[PARAM_SHAPES]
109
-
110
- # collect parameters that are included in param_shapes
111
- param_names = []
112
- for s in param_shapes:
113
- for name in s.keys():
114
- param_names.append(name)
115
-
116
- # update with frozen parameters
117
- frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
- if frozen_param_shapes is not None:
119
- if debug:
120
- print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
- param_names += list(frozen_param_shapes.keys())
122
-
123
- # handle shared params
124
- shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
-
126
- ds_version = state_dict.get(DS_VERSION, None)
127
-
128
- frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
-
130
- z_model_state = zero_model_state(buffers=buffers,
131
- param_shapes=param_shapes,
132
- shared_params=shared_params,
133
- ds_version=ds_version,
134
- frozen_param_shapes=frozen_param_shapes,
135
- frozen_param_fragments=frozen_param_fragments)
136
- zero_model_states.append(z_model_state)
137
-
138
- return zero_model_states
139
-
140
-
141
- def parse_optim_states(files, ds_checkpoint_dir):
142
-
143
- total_files = len(files)
144
- state_dicts = []
145
- for f in files:
146
- state_dict = torch.load(f, map_location=device)
147
- # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
- # and also handle the case where it was already removed by another helper script
149
- state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
- state_dicts.append(state_dict)
151
-
152
- if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
- raise ValueError(f"{files[0]} is not a zero checkpoint")
154
- zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
- world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
-
157
- # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
- # parameters can be different from data parallelism for non-expert parameters. So we can just
159
- # use the max of the partition_count to get the dp world_size.
160
-
161
- if type(world_size) is list:
162
- world_size = max(world_size)
163
-
164
- if world_size != total_files:
165
- raise ValueError(
166
- f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
- "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
- )
169
-
170
- # the groups are named differently in each stage
171
- if zero_stage <= 2:
172
- fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
- elif zero_stage == 3:
174
- fp32_groups_key = FP32_FLAT_GROUPS
175
- else:
176
- raise ValueError(f"unknown zero stage {zero_stage}")
177
-
178
- if zero_stage <= 2:
179
- fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
- elif zero_stage == 3:
181
- # if there is more than one param group, there will be multiple flattened tensors - one
182
- # flattened tensor per group - for simplicity merge them into a single tensor
183
- #
184
- # XXX: could make the script more memory efficient for when there are multiple groups - it
185
- # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
-
187
- fp32_flat_groups = [
188
- torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
- ]
190
-
191
- return zero_stage, world_size, fp32_flat_groups
192
-
193
-
194
- def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
195
- """
196
- Returns fp32 state_dict reconstructed from ds checkpoint
197
-
198
- Args:
199
- - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
-
201
- """
202
- print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
-
204
- optim_files = get_optim_files(ds_checkpoint_dir)
205
- zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
- print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
-
208
- model_files = get_model_state_files(ds_checkpoint_dir)
209
-
210
- zero_model_states = parse_model_states(model_files)
211
- print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
-
213
- if zero_stage <= 2:
214
- return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
215
- elif zero_stage == 3:
216
- return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
217
-
218
-
219
- def _zero2_merge_frozen_params(state_dict, zero_model_states):
220
- if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
221
- return
222
-
223
- frozen_param_shapes = zero_model_states[0].frozen_param_shapes
224
- frozen_param_fragments = zero_model_states[0].frozen_param_fragments
225
-
226
- if debug:
227
- num_elem = sum(s.numel() for s in frozen_param_shapes.values())
228
- print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
229
-
230
- wanted_params = len(frozen_param_shapes)
231
- wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
232
- avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
233
- print(f'Frozen params: Have {avail_numel} numels to process.')
234
- print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
235
-
236
- total_params = 0
237
- total_numel = 0
238
- for name, shape in frozen_param_shapes.items():
239
- total_params += 1
240
- unpartitioned_numel = shape.numel()
241
- total_numel += unpartitioned_numel
242
-
243
- state_dict[name] = frozen_param_fragments[name]
244
-
245
- if debug:
246
- print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
247
-
248
- print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
249
-
250
-
251
- def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
252
- param_shapes = zero_model_states[0].param_shapes
253
-
254
- # Reconstruction protocol:
255
- #
256
- # XXX: document this
257
-
258
- if debug:
259
- for i in range(world_size):
260
- for j in range(len(fp32_flat_groups[0])):
261
- print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
262
-
263
- # XXX: memory usage doubles here (zero2)
264
- num_param_groups = len(fp32_flat_groups[0])
265
- merged_single_partition_of_fp32_groups = []
266
- for i in range(num_param_groups):
267
- merged_partitions = [sd[i] for sd in fp32_flat_groups]
268
- full_single_fp32_vector = torch.cat(merged_partitions, 0)
269
- merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
270
- avail_numel = sum(
271
- [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
272
-
273
- if debug:
274
- wanted_params = sum([len(shapes) for shapes in param_shapes])
275
- wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
276
- # not asserting if there is a mismatch due to possible padding
277
- print(f"Have {avail_numel} numels to process.")
278
- print(f"Need {wanted_numel} numels in {wanted_params} params.")
279
-
280
- # params
281
- # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
282
- # out-of-core computing solution
283
- total_numel = 0
284
- total_params = 0
285
- for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
286
- offset = 0
287
- avail_numel = full_single_fp32_vector.numel()
288
- for name, shape in shapes.items():
289
-
290
- unpartitioned_numel = shape.numel()
291
- total_numel += unpartitioned_numel
292
- total_params += 1
293
-
294
- if debug:
295
- print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
296
- state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
297
- offset += unpartitioned_numel
298
-
299
- # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
300
- # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
301
- # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
302
- # live optimizer object, so we are checking that the numbers are within the right range
303
- align_to = 2 * world_size
304
-
305
- def zero2_align(x):
306
- return align_to * math.ceil(x / align_to)
307
-
308
- if debug:
309
- print(f"original offset={offset}, avail_numel={avail_numel}")
310
-
311
- offset = zero2_align(offset)
312
- avail_numel = zero2_align(avail_numel)
313
-
314
- if debug:
315
- print(f"aligned offset={offset}, avail_numel={avail_numel}")
316
-
317
- # Sanity check
318
- if offset != avail_numel:
319
- raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
320
-
321
- print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
322
-
323
-
324
- def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
325
- state_dict = OrderedDict()
326
-
327
- # buffers
328
- buffers = zero_model_states[0].buffers
329
- state_dict.update(buffers)
330
- if debug:
331
- print(f"added {len(buffers)} buffers")
332
-
333
- _zero2_merge_frozen_params(state_dict, zero_model_states)
334
-
335
- _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
336
-
337
- # recover shared parameters
338
- for pair in zero_model_states[0].shared_params:
339
- if pair[1] in state_dict:
340
- state_dict[pair[0]] = state_dict[pair[1]]
341
-
342
- return state_dict
343
-
344
-
345
- def zero3_partitioned_param_info(unpartitioned_numel, world_size):
346
- remainder = unpartitioned_numel % world_size
347
- padding_numel = (world_size - remainder) if remainder else 0
348
- partitioned_numel = math.ceil(unpartitioned_numel / world_size)
349
- return partitioned_numel, padding_numel
350
-
351
-
352
- def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
353
- if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
354
- return
355
-
356
- if debug:
357
- for i in range(world_size):
358
- num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
359
- print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
360
-
361
- frozen_param_shapes = zero_model_states[0].frozen_param_shapes
362
- wanted_params = len(frozen_param_shapes)
363
- wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
364
- avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
365
- print(f'Frozen params: Have {avail_numel} numels to process.')
366
- print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
367
-
368
- total_params = 0
369
- total_numel = 0
370
- for name, shape in zero_model_states[0].frozen_param_shapes.items():
371
- total_params += 1
372
- unpartitioned_numel = shape.numel()
373
- total_numel += unpartitioned_numel
374
-
375
- param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
376
- state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
377
-
378
- partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
379
-
380
- if debug:
381
- print(
382
- f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
383
- )
384
-
385
- print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
386
-
387
-
388
- def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
389
- param_shapes = zero_model_states[0].param_shapes
390
- avail_numel = fp32_flat_groups[0].numel() * world_size
391
- # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
392
- # param, re-consolidating each param, while dealing with padding if any
393
-
394
- # merge list of dicts, preserving order
395
- param_shapes = {k: v for d in param_shapes for k, v in d.items()}
396
-
397
- if debug:
398
- for i in range(world_size):
399
- print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
400
-
401
- wanted_params = len(param_shapes)
402
- wanted_numel = sum(shape.numel() for shape in param_shapes.values())
403
- # not asserting if there is a mismatch due to possible padding
404
- avail_numel = fp32_flat_groups[0].numel() * world_size
405
- print(f"Trainable params: Have {avail_numel} numels to process.")
406
- print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
407
-
408
- # params
409
- # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
410
- # out-of-core computing solution
411
- offset = 0
412
- total_numel = 0
413
- total_params = 0
414
- for name, shape in param_shapes.items():
415
-
416
- unpartitioned_numel = shape.numel()
417
- total_numel += unpartitioned_numel
418
- total_params += 1
419
-
420
- partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
421
-
422
- if debug:
423
- print(
424
- f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
425
- )
426
-
427
- # XXX: memory usage doubles here
428
- state_dict[name] = torch.cat(
429
- tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
430
- 0).narrow(0, 0, unpartitioned_numel).view(shape)
431
- offset += partitioned_numel
432
-
433
- offset *= world_size
434
-
435
- # Sanity check
436
- if offset != avail_numel:
437
- raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
438
-
439
- print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
440
-
441
-
442
- def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
443
- state_dict = OrderedDict()
444
-
445
- # buffers
446
- buffers = zero_model_states[0].buffers
447
- state_dict.update(buffers)
448
- if debug:
449
- print(f"added {len(buffers)} buffers")
450
-
451
- _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
452
-
453
- _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
454
-
455
- # recover shared parameters
456
- for pair in zero_model_states[0].shared_params:
457
- if pair[1] in state_dict:
458
- state_dict[pair[0]] = state_dict[pair[1]]
459
-
460
- return state_dict
461
-
462
-
463
- def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
464
- """
465
- Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
466
- ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
467
- via a model hub.
468
-
469
- Args:
470
- - ``checkpoint_dir``: path to the desired checkpoint folder
471
- - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
472
-
473
- Returns:
474
- - pytorch ``state_dict``
475
-
476
- Note: this approach may not work if your application doesn't have sufficient free CPU memory and
477
- you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
478
- the checkpoint.
479
-
480
- A typical usage might be ::
481
-
482
- from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
483
- # do the training and checkpoint saving
484
- state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
485
- model = model.cpu() # move to cpu
486
- model.load_state_dict(state_dict)
487
- # submit to model hub or save the model to share with others
488
-
489
- In this example the ``model`` will no longer be usable in the deepspeed context of the same
490
- application. i.e. you will need to re-initialize the deepspeed engine, since
491
- ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
492
-
493
- If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
494
-
495
- """
496
- if tag is None:
497
- latest_path = os.path.join(checkpoint_dir, 'latest')
498
- if os.path.isfile(latest_path):
499
- with open(latest_path, 'r') as fd:
500
- tag = fd.read().strip()
501
- else:
502
- raise ValueError(f"Unable to find 'latest' file at {latest_path}")
503
-
504
- ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
505
-
506
- if not os.path.isdir(ds_checkpoint_dir):
507
- raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
508
-
509
- return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
510
-
511
-
512
- def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
513
- """
514
- Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
515
- loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
516
-
517
- Args:
518
- - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
519
- - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
520
- - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
521
- """
522
-
523
- state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
524
- print(f"Saving fp32 state dict to {output_file}")
525
- torch.save(state_dict, output_file)
526
-
527
-
528
- def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
529
- """
530
- 1. Put the provided model to cpu
531
- 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
532
- 3. Load it into the provided model
533
-
534
- Args:
535
- - ``model``: the model object to update
536
- - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
537
- - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
538
-
539
- Returns:
540
- - ``model`: modified model
541
-
542
- Make sure you have plenty of CPU memory available before you call this function. If you don't
543
- have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
544
- conveniently placed for you in the checkpoint folder.
545
-
546
- A typical usage might be ::
547
-
548
- from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
549
- model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
550
- # submit to model hub or save the model to share with others
551
-
552
- Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
553
- of the same application. i.e. you will need to re-initialize the deepspeed engine, since
554
- ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
555
-
556
- """
557
- logger.info(f"Extracting fp32 weights")
558
- state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
559
-
560
- logger.info(f"Overwriting model with fp32 weights")
561
- model = model.cpu()
562
- model.load_state_dict(state_dict, strict=False)
563
-
564
- return model
565
-
566
-
567
- if __name__ == "__main__":
568
-
569
- parser = argparse.ArgumentParser()
570
- parser.add_argument("checkpoint_dir",
571
- type=str,
572
- help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
573
- parser.add_argument(
574
- "output_file",
575
- type=str,
576
- help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
577
- parser.add_argument("-t",
578
- "--tag",
579
- type=str,
580
- default=None,
581
- help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
582
- parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
583
- args = parser.parse_args()
584
-
585
- debug = args.debug
586
-
587
- convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)