File size: 14,355 Bytes
10d5469
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16583e6
10d5469
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16583e6
10d5469
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10647af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16583e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37e224f
16583e6
 
 
 
 
 
 
 
 
37e224f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16583e6
10d5469
 
 
 
 
 
 
 
 
 
 
16583e6
10d5469
 
 
 
 
 
 
 
 
 
 
 
16583e6
10d5469
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16583e6
10d5469
 
 
 
 
 
 
 
 
 
 
16583e6
 
 
 
 
10647af
 
 
 
37e224f
 
 
 
16583e6
10647af
16583e6
10d5469
16583e6
10d5469
16583e6
 
 
 
 
 
 
 
 
 
10d5469
 
 
 
10647af
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: Address all TODOs and remove all explanatory comments
"""TODO: Add a description here."""

import numpy as np
import datasets
from datasets import Value
import pickle
# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {A great new dataset},
author={huggingface, Inc.
},
year={2020}
}
"""

# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
"""

# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = ""

# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""



feature_dtype = {'s2_num_days': Value('int16'),
                'gedi_num_days': Value('uint16'),
                'lat': Value('float32'),
                'lon': Value('float32'),
                "agbd_se": Value('float32'),
                "elev_lowes": Value('float32'),
                "leaf_off_f": Value('uint8'),
                "pft_class": Value('uint8'),
                "region_cla": Value('uint8'),
                "rh98": Value('float32'),
                "sensitivity": Value('float32'),
                "solar_elev": Value('float32'),
                "urban_prop":Value('uint8')}

norm_values = {'ALOS_bands': {
    'HH': {'mean': -10.381429, 'std': 8.561741, 'min': -83.0, 'max': 13.329468, 'p1': -19.542107, 'p99': -2.402588},
    'HV': {'mean': -16.722847, 'std': 8.718428, 'min': -83.0, 'max': 11.688309, 'p1': -29.285168, 'p99': -8.773987}},
               'S2_bands': {'B01': {'mean': 0.12478869, 'std': 0.024433358, 'min': 1e-04, 'max': 1.8808, 'p1': 0.0787,
                                    'p99': 0.1946},
                            'B02': {'mean': 0.13480005, 'std': 0.02822557, 'min': 1e-04, 'max': 2.1776, 'p1': 0.0925,
                                    'p99': 0.2216},
                            'B03': {'mean': 0.16031432, 'std': 0.032037303, 'min': 1e-04, 'max': 2.12, 'p1': 0.1035,
                                    'p99': 0.2556},
                            'B04': {'mean': 0.1532097, 'std': 0.038628064, 'min': 1e-04, 'max': 2.0032, 'p1': 0.1023,
                                    'p99': 0.2816},
                            'B05': {'mean': 0.20312776, 'std': 0.04205057, 'min': 0.0422, 'max': 1.7502, 'p1': 0.1178,
                                    'p99': 0.319},
                            'B06': {'mean': 0.32636437, 'std': 0.07139242, 'min': 0.0502, 'max': 1.7245, 'p1': 0.1633,
                                    'p99': 0.519},
                            'B07': {'mean': 0.36605212, 'std': 0.08555025, 'min': 0.0616, 'max': 1.7149, 'p1': 0.1776,
                                    'p99': 0.6076},
                            'B08': {'mean': 0.3811653, 'std': 0.092815965, 'min': 1e-04, 'max': 1.7488, 'p1': 0.1691,
                                    'p99': 0.646},
                            'B8A': {'mean': 0.3910436, 'std': 0.0896364, 'min': 0.055, 'max': 1.688, 'p1': 0.1871,
                                    'p99': 0.6386},
                            'B09': {'mean': 0.3910644, 'std': 0.0836445, 'min': 0.0012, 'max': 1.7915, 'p1': 0.2124,
                                    'p99': 0.6241},
                            'B11': {'mean': 0.2917373, 'std': 0.07472579, 'min': 0.0953, 'max': 1.648, 'p1': 0.1334,
                                    'p99': 0.4827},
                            'B12': {'mean': 0.21169408, 'std': 0.05880649, 'min': 0.0975, 'max': 1.6775, 'p1': 0.115,
                                    'p99': 0.3872}},
               'CH': {'ch': {'mean': 9.736144, 'std': 9.493601, 'min': 0.0, 'max': 61.0, 'p1': 0.0, 'p99': 38.0},
                      'std': {'mean': 7.9882116, 'std': 4.549494, 'min': 0.0, 'max': 254.0, 'p1': 0.0, 'p99': 18.0}},
               'DEM': {'mean': 604.63727, 'std': 588.02094, 'min': -82.0, 'max': 5205.0, 'p1': 507.0, 'p99': 450.0},
               'Sentinel_metadata': {
                   'S2_vegetation_score': {'mean': 89.168724, 'std': 17.17321, 'min': 20.0, 'max': 100.0, 'p1': 29.0,
                                           'p99': 100.0},
                   'S2_date': {'mean': 299.1638, 'std': 192.87402, 'min': -165.0, 'max': 623.0, 'p1': 253.0,
                               'p99': 277.0}}, 'GEDI': {
        'agbd': {'mean': 66.97266, 'std': 98.66588, 'min': 0.0, 'max': 499.99985, 'p1': 0.9703503, 'p99': 163.46234},
        'agbd_se': {'mean': 8.360701, 'std': 4.211524, 'min': 2.981795, 'max': 25.041483, 'p1': 2.9830396,
                    'p99': 8.612499},
        'rh98': {'mean': 12.074685, 'std': 10.276359, 'min': -1.1200076, 'max': 111.990005, 'p1': 2.3599916,
                 'p99': 6.9500012},
        'date': {'mean': 361.7431, 'std': 175.37294, 'min': 0.0, 'max': 624.0, 'p1': 360.0, 'p99': 146.0}}}

def encode_lat_lon(lat, lon):
    """
    Encode the latitude and longitude into sin/cosine values. We use a simple WRAP positional encoding, as
    Mac Aodha et al. (2019).

    Args:
    - lat (float): the latitude
    - lon (float): the longitude

    Returns:
    - (lat_cos, lat_sin, lon_cos, lon_sin) (tuple): the sin/cosine values for the latitude and longitude
    """

    # The latitude goes from -90 to 90
    lat_cos, lat_sin = np.cos(np.pi * lat / 90), np.sin(np.pi * lat / 90)
    # The longitude goes from -180 to 180
    lon_cos, lon_sin = np.cos(np.pi * lon / 180), np.sin(np.pi * lon / 180)

    # Now we put everything in the [0,1] range
    lat_cos, lat_sin = (lat_cos + 1) / 2, (lat_sin + 1) / 2
    lon_cos, lon_sin = (lon_cos + 1) / 2, (lon_sin + 1) / 2

    return lat_cos, lat_sin, lon_cos, lon_sin


def encode_coords(central_lat, central_lon, patch_size, resolution=10):
    """
    This function computes the latitude and longitude of a patch, from the latitude and longitude of its central pixel.
    It then encodes these values into sin/cosine values, and scales the results to [0,1].

    Args:
    - central_lat (float): the latitude of the central pixel
    - central_lon (float): the longitude of the central pixel
    - patch_size (tuple): the size of the patch
    - resolution (int): the resolution of the patch

    Returns:
    - (lat_cos, lat_sin, lon_cos, lon_sin) (tuple): the sin/cosine values for the latitude and longitude
    """

    # Initialize arrays to store latitude and longitude coordinates

    i_indices, j_indices = np.indices(patch_size)

    # Calculate the distance offset in meters for each pixel
    offset_lat = (i_indices - patch_size[0] // 2) * resolution
    offset_lon = (j_indices - patch_size[1] // 2) * resolution

    # Calculate the latitude and longitude for each pixel
    latitudes = central_lat + (offset_lat / 6371000) * (180 / np.pi)
    longitudes = central_lon + (offset_lon / 6371000) * (180 / np.pi) / np.cos(central_lat * np.pi / 180)

    lat_cos, lat_sin, lon_cos, lon_sin = encode_lat_lon(latitudes, longitudes)

    return lat_cos, lat_sin, lon_cos, lon_sin


"""
Example usage:
lat_cos, lat_sin, lon_cos, lon_sin = encode_coords(lat, lon, self.patch_size)
lat_cos, lat_sin, lon_cos, lon_sin = lat_cos[..., np.newaxis], lat_sin[..., np.newaxis], lon_cos[..., np.newaxis], lon_sin[..., np.newaxis]
"""


#########################################################################################################################
# Denormalizer


def denormalize_data(data, norm_values, norm_strat='pct'):
    """
    Normalize the data, according to various strategies:
    - mean_std: subtract the mean and divide by the standard deviation
    - pct: subtract the 1st percentile and divide by the 99th percentile
    - min_max: subtract the minimum and divide by the maximum

    Args:
    - data (np.array): the data to normalize
    - norm_values (dict): the normalization values
    - norm_strat (str): the normalization strategy

    Returns:
    - normalized_data (np.array): the normalized data
    """

    if norm_strat == 'mean_std':
        mean, std = norm_values['mean'], norm_values['std']
        data = (data - mean) / std

    elif norm_strat == 'pct':
        p1, p99 = norm_values['p1'], norm_values['p99']
        data = data * (p99 - p1) + p1

    elif norm_strat == 'min_max':
        min_val, max_val = norm_values['min'], norm_values['max']
        data = data * (max_val - min_val) + min_val

    else:
        raise ValueError(f'De-normalization strategy `{norm_strat}` is not valid.')

    return data


def denormalize_bands(bands_data, norm_values, order, norm_strat='pct'):
    """
    This function normalizes the bands data using the normalization values and strategy.

    Args:
    - bands_data (np.array): the bands data to normalize
    - norm_values (dict): the normalization values
    - order (list): the order of the bands
    - norm_strat (str): the normalization strategy

    Returns:
    - bands_data (np.array): the normalized bands data
    """

    for i, band in enumerate(order):
        band_norm = norm_values[band]
        bands_data[:, :, i] = denormalize_data(bands_data[:, :, i], band_norm, norm_strat)

    return bands_data

"""
def decode_lc(encoded_lc, mode='cos'):
    # Encode the LC classes with sin/cosine values and scale the data to [0,1]
    if mode == 'cos':
        lc = 100 * np.arccos(2 * encoded_lc - 1) / (2 * np.pi)
    elif mode == 'sin':
        lc = 100 * np.arcsin(2 * encoded_lc - 1) / (2 * np.pi)
    else:
        raise ValueError(f'Mode `{mode}` is not valid.')
    return lc
"""

def recover_lc_map(lc_cos, lc_sin):
    
    # Convert lc_cos and lc_sin back to the range of the original sin and cos values
    lc_cos = 2 * lc_cos - 1
    lc_sin = 2 * lc_sin - 1
    
    # Calculate the angles using arccos and arcsin
    theta_cos = np.arccos(lc_cos)
    sin_theta_cos = np.sin(theta_cos)
    check = np.isclose(sin_theta_cos, lc_sin, atol = 1e-8)
    theta = np.where(check, theta_cos, 2 * np.pi - theta_cos)
    
    # Convert the angle theta back to lc_map
    lc_map = np.round((theta / (2 * np.pi)) * 100)
    lc_map = np.where(lc_map % 10 != 0, lc_map + 100, lc_map)
    
    return lc_map


class NewDataset(datasets.GeneratorBasedBuilder):
    def __init__(self, *args, additional_features=[], normalize_data=True, patch_size=15, **kwargs):
        self.inner_dataset_kwargs = kwargs
        self._is_streaming = False
        self.patch_size = patch_size
        self.normalize_data = normalize_data
        self.additional_features = additional_features
        super().__init__(*args, **kwargs)

    VERSION = datasets.Version("1.1.0")


    BUILDER_CONFIGS = [
        datasets.BuilderConfig(name="default", version=VERSION, description="Normalized data"),
        datasets.BuilderConfig(name="unnormalized", version=VERSION, description="Unnormalized data"),
    ]

    DEFAULT_CONFIG_NAME = "default"

    def as_streaming_dataset(self, split=None, base_path=None):
        self._is_streaming = True
        return super().as_streaming_dataset(split=split, base_path=base_path)

    def _info(self):

        all_features = {
            'input': datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Value('float32')))),
            'label': Value('float32')
        }
        for feat in self.additional_features:
            all_features[feat] = feature_dtype[feat]
        features = datasets.Features(all_features)

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )



    def _split_generators(self, dl_manager):
        self.original_dataset = datasets.load_dataset("prs-eth/AGBD_raw", streaming=self._is_streaming)
        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"split": "train"}),
            datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"split": "val"}),
            datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"split": "test"}),
        ]

    def _generate_examples(self, split):
        for i, d in enumerate(self.original_dataset[split]):
            if self.normalize_data :
                patch = np.asarray(d["input"])

            else:
                patch = np.asarray(d["input"])
                patch[:12] = denormalize_bands(patch[:12], norm_values['S2_bands'],['B01', 'B02', 'B03', 'B04', 'B05', 'B06', 'B07', 'B08', 'B8A', 'B09','B11', 'B12'])
                patch[12:14] = denormalize_bands(patch[12:14], norm_values['ALOS_bands'], ['HH', 'HV'])
                patch[14] = denormalize_data(patch[14], norm_values['CH']['ch'])
                patch[15] = denormalize_data(patch[15], norm_values['CH']['std'])
                lc_cos, lc_sin = patch[16], patch[17]
                lc = recover_lc_map(lc_cos, lc_sin)
                patch[16] = lc
                patch[17] = lc
                patch[18] = patch[18] * 100
                patch[19] = denormalize_data(patch[19], norm_values['DEM'])


            lat, lon = d["metadata"]["lat"],d["metadata"]["lon"]

            latlon_patch = encode_coords(lat, lon,(self.patch_size,self.patch_size))


            start_x = (patch.shape[1] - self.patch_size) // 2
            start_y = (patch.shape[2] - self.patch_size) // 2
            patch = patch[:, start_x:start_x + self.patch_size, start_y:start_y + self.patch_size]

            patch = np.concatenate([patch[:12],latlon_patch,patch[12:]],0)

            data = {'input': patch, 'label': d["label"]}
            for feat in self.additional_features:
                data[feat] = d["metadata"][feat]

            yield i, data