Datasets:
projectlosangeles
commited on
Upload 2 files
Browse files- Monster_Music_Transformer.ipynb +964 -0
- monster_music_transformer.py +809 -0
Monster_Music_Transformer.ipynb
ADDED
@@ -0,0 +1,964 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"source": [
|
6 |
+
"# Monster Music Transformer (ver. 1.0)\n",
|
7 |
+
"\n",
|
8 |
+
"***\n",
|
9 |
+
"\n",
|
10 |
+
"Powered by tegridy-tools: https://github.com/asigalov61/tegridy-tools\n",
|
11 |
+
"\n",
|
12 |
+
"***\n",
|
13 |
+
"\n",
|
14 |
+
"WARNING: This complete implementation is a functioning model of the Artificial Intelligence. Please excercise great humility, care, and respect. https://www.nscai.gov/\n",
|
15 |
+
"\n",
|
16 |
+
"***\n",
|
17 |
+
"\n",
|
18 |
+
"#### Project Los Angeles\n",
|
19 |
+
"\n",
|
20 |
+
"#### Tegridy Code 2024\n",
|
21 |
+
"\n",
|
22 |
+
"***"
|
23 |
+
],
|
24 |
+
"metadata": {
|
25 |
+
"id": "gpy3qsulqHa5"
|
26 |
+
}
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"cell_type": "markdown",
|
30 |
+
"source": [
|
31 |
+
"# (GPU CHECK)"
|
32 |
+
],
|
33 |
+
"metadata": {
|
34 |
+
"id": "W_So4w8fqPGL"
|
35 |
+
}
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"cell_type": "code",
|
39 |
+
"execution_count": null,
|
40 |
+
"metadata": {
|
41 |
+
"id": "X3rABEpKCO02",
|
42 |
+
"cellView": "form"
|
43 |
+
},
|
44 |
+
"outputs": [],
|
45 |
+
"source": [
|
46 |
+
"#@title NVIDIA GPU check\n",
|
47 |
+
"!nvidia-smi"
|
48 |
+
]
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"cell_type": "markdown",
|
52 |
+
"source": [
|
53 |
+
"# (SETUP ENVIRONMENT)"
|
54 |
+
],
|
55 |
+
"metadata": {
|
56 |
+
"id": "C0XxnXGFqVyh"
|
57 |
+
}
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"cell_type": "code",
|
61 |
+
"execution_count": null,
|
62 |
+
"metadata": {
|
63 |
+
"id": "vK40g6V_BTNj",
|
64 |
+
"cellView": "form"
|
65 |
+
},
|
66 |
+
"outputs": [],
|
67 |
+
"source": [
|
68 |
+
"#@title Install dependencies\n",
|
69 |
+
"!git clone --depth 1 https://github.com/asigalov61/Monster-MIDI-Dataset\n",
|
70 |
+
"!pip install huggingface_hub\n",
|
71 |
+
"!pip install einops\n",
|
72 |
+
"!pip install torch-summary\n",
|
73 |
+
"!apt install fluidsynth #Pip does not work for some reason. Only apt works"
|
74 |
+
]
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"cell_type": "code",
|
78 |
+
"execution_count": null,
|
79 |
+
"metadata": {
|
80 |
+
"id": "DzCOZU_gBiQV",
|
81 |
+
"cellView": "form"
|
82 |
+
},
|
83 |
+
"outputs": [],
|
84 |
+
"source": [
|
85 |
+
"#@title Import modules\n",
|
86 |
+
"\n",
|
87 |
+
"print('=' * 70)\n",
|
88 |
+
"print('Loading core Monster Music Transformer modules...')\n",
|
89 |
+
"\n",
|
90 |
+
"import os\n",
|
91 |
+
"import copy\n",
|
92 |
+
"import pickle\n",
|
93 |
+
"import secrets\n",
|
94 |
+
"import statistics\n",
|
95 |
+
"from time import time\n",
|
96 |
+
"import tqdm\n",
|
97 |
+
"\n",
|
98 |
+
"print('=' * 70)\n",
|
99 |
+
"print('Loading main Monster Music Transformer modules...')\n",
|
100 |
+
"import torch\n",
|
101 |
+
"\n",
|
102 |
+
"%cd /content/Monster-MIDI-Dataset\n",
|
103 |
+
"\n",
|
104 |
+
"import TMIDIX\n",
|
105 |
+
"\n",
|
106 |
+
"from midi_to_colab_audio import midi_to_colab_audio\n",
|
107 |
+
"\n",
|
108 |
+
"from x_transformer_1_27_16 import *\n",
|
109 |
+
"\n",
|
110 |
+
"import random\n",
|
111 |
+
"\n",
|
112 |
+
"%cd /content/\n",
|
113 |
+
"print('=' * 70)\n",
|
114 |
+
"print('Loading aux Monster Music Transformer modules...')\n",
|
115 |
+
"\n",
|
116 |
+
"import matplotlib.pyplot as plt\n",
|
117 |
+
"\n",
|
118 |
+
"from torchsummary import summary\n",
|
119 |
+
"from sklearn import metrics\n",
|
120 |
+
"\n",
|
121 |
+
"from IPython.display import Audio, display\n",
|
122 |
+
"\n",
|
123 |
+
"from huggingface_hub import hf_hub_download\n",
|
124 |
+
"\n",
|
125 |
+
"from google.colab import files\n",
|
126 |
+
"\n",
|
127 |
+
"print('=' * 70)\n",
|
128 |
+
"print('Done!')\n",
|
129 |
+
"print('Enjoy! :)')\n",
|
130 |
+
"print('=' * 70)"
|
131 |
+
]
|
132 |
+
},
|
133 |
+
{
|
134 |
+
"cell_type": "markdown",
|
135 |
+
"metadata": {
|
136 |
+
"id": "eI3aQtHzqSnp"
|
137 |
+
},
|
138 |
+
"source": [
|
139 |
+
"# (LOAD MODEL)"
|
140 |
+
]
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"cell_type": "code",
|
144 |
+
"source": [
|
145 |
+
"#@title Load Monster Music Transformer Pre-Trained Model\n",
|
146 |
+
"\n",
|
147 |
+
"#@markdown Choose model\n",
|
148 |
+
"\n",
|
149 |
+
"select_model_to_load = \"651M-32L-Fast-Large\" # @param [\"651M-32L-Fast-Large\"]\n",
|
150 |
+
"\n",
|
151 |
+
"#@markdown Model precision option\n",
|
152 |
+
"\n",
|
153 |
+
"model_precision = \"bfloat16\" # @param [\"bfloat16\", \"float16\"]\n",
|
154 |
+
"\n",
|
155 |
+
"#@markdown bfloat16 == Half precision/faster speed (if supported, otherwise the model will default to float16)\n",
|
156 |
+
"\n",
|
157 |
+
"#@markdown float16 == Full precision/fast speed\n",
|
158 |
+
"\n",
|
159 |
+
"plot_tokens_embeddings = \"None\" # @param [\"None\", \"Start Times\", \"Durations Velocities\", \"Piano Pitches\", \"Drums Pitches\", \"Aux\"]\n",
|
160 |
+
"\n",
|
161 |
+
"print('=' * 70)\n",
|
162 |
+
"print('Loading Monster Music Transformer', select_model_to_load,'Pre-Trained Model...')\n",
|
163 |
+
"print('Please wait...')\n",
|
164 |
+
"print('=' * 70)\n",
|
165 |
+
"\n",
|
166 |
+
"full_path_to_models_dir = \"/content/Monster-MIDI-Dataset/\"\n",
|
167 |
+
"\n",
|
168 |
+
"if select_model_to_load == '651M-32L-Fast-Large':\n",
|
169 |
+
"\n",
|
170 |
+
" model_checkpoint_file_name = 'Monster_Music_Transformer_Large_Trained_Model_22501_steps_0.3419_loss_0.9121_acc.pth'\n",
|
171 |
+
" model_path = full_path_to_models_dir+'/'+model_checkpoint_file_name\n",
|
172 |
+
" num_layers = 36\n",
|
173 |
+
" if os.path.isfile(model_path):\n",
|
174 |
+
" print('Model already exists...')\n",
|
175 |
+
"\n",
|
176 |
+
" else:\n",
|
177 |
+
" hf_hub_download(repo_id='asigalov61/Monster-Music-Transformer',\n",
|
178 |
+
" filename=model_checkpoint_file_name,\n",
|
179 |
+
" local_dir='/content/Monster-MIDI-Dataset',\n",
|
180 |
+
" local_dir_use_symlinks=False)\n",
|
181 |
+
"\n",
|
182 |
+
"print('=' * 70)\n",
|
183 |
+
"print('Instantiating model...')\n",
|
184 |
+
"\n",
|
185 |
+
"device_type = 'cuda'\n",
|
186 |
+
"\n",
|
187 |
+
"if model_precision == 'bfloat16' and torch.cuda.is_bf16_supported():\n",
|
188 |
+
" dtype = 'bfloat16'\n",
|
189 |
+
"else:\n",
|
190 |
+
" dtype = 'float16'\n",
|
191 |
+
"\n",
|
192 |
+
"if model_precision == 'float16':\n",
|
193 |
+
" dtype = 'float16'\n",
|
194 |
+
"\n",
|
195 |
+
"ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]\n",
|
196 |
+
"ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype)\n",
|
197 |
+
"\n",
|
198 |
+
"SEQ_LEN = 8192\n",
|
199 |
+
"\n",
|
200 |
+
"# instantiate the model\n",
|
201 |
+
"\n",
|
202 |
+
"model = TransformerWrapper(\n",
|
203 |
+
" num_tokens = 19080,\n",
|
204 |
+
" max_seq_len = SEQ_LEN,\n",
|
205 |
+
" attn_layers = Decoder(dim = 1024, depth = num_layers, heads = 32, attn_flash=True)\n",
|
206 |
+
")\n",
|
207 |
+
"\n",
|
208 |
+
"model = AutoregressiveWrapper(model, ignore_index=19079)\n",
|
209 |
+
"\n",
|
210 |
+
"model.cuda()\n",
|
211 |
+
"print('=' * 70)\n",
|
212 |
+
"\n",
|
213 |
+
"print('Loading model checkpoint...')\n",
|
214 |
+
"\n",
|
215 |
+
"model.load_state_dict(torch.load(model_path))\n",
|
216 |
+
"print('=' * 70)\n",
|
217 |
+
"\n",
|
218 |
+
"model.eval()\n",
|
219 |
+
"\n",
|
220 |
+
"print('Done!')\n",
|
221 |
+
"print('=' * 70)\n",
|
222 |
+
"\n",
|
223 |
+
"print('Model will use', dtype, 'precision...')\n",
|
224 |
+
"print('=' * 70)\n",
|
225 |
+
"\n",
|
226 |
+
"# Model stats\n",
|
227 |
+
"print('Model summary...')\n",
|
228 |
+
"summary(model)\n",
|
229 |
+
"\n",
|
230 |
+
"# Plot Token Embeddings\n",
|
231 |
+
"if plot_tokens_embeddings != 'None':\n",
|
232 |
+
" tok_emb = model.net.token_emb.emb.weight.detach().cpu().tolist()\n",
|
233 |
+
"\n",
|
234 |
+
"if plot_tokens_embeddings == 'Start Times':\n",
|
235 |
+
" tok_range = [0, 256]\n",
|
236 |
+
"\n",
|
237 |
+
"elif plot_tokens_embeddings == 'Durations Velocities':\n",
|
238 |
+
" tok_range = [256, 2304]\n",
|
239 |
+
"\n",
|
240 |
+
"elif plot_tokens_embeddings == 'Piano Pitches':\n",
|
241 |
+
" tok_range = [2304, 2304+128]\n",
|
242 |
+
"\n",
|
243 |
+
"elif plot_tokens_embeddings == 'Drums Pitches':\n",
|
244 |
+
" tok_range = [18945-128, 18945]\n",
|
245 |
+
"\n",
|
246 |
+
"elif plot_tokens_embeddings == 'Aux':\n",
|
247 |
+
" tok_range = [18945, 19079]\n",
|
248 |
+
"\n",
|
249 |
+
"if plot_tokens_embeddings != 'None':\n",
|
250 |
+
"\n",
|
251 |
+
" tok_emb1 = []\n",
|
252 |
+
"\n",
|
253 |
+
" for t in tok_emb[tok_range[0]:tok_range[1]]:\n",
|
254 |
+
" tok_emb1.append(t)\n",
|
255 |
+
"\n",
|
256 |
+
" cos_sim = metrics.pairwise_distances(\n",
|
257 |
+
" tok_emb1, metric='cosine'\n",
|
258 |
+
" )\n",
|
259 |
+
" plt.figure(figsize=(7, 7))\n",
|
260 |
+
" plt.imshow(cos_sim, cmap=\"inferno\", interpolation=\"nearest\")\n",
|
261 |
+
" im_ratio = cos_sim.shape[0] / cos_sim.shape[1]\n",
|
262 |
+
" plt.colorbar(fraction=0.046 * im_ratio, pad=0.04)\n",
|
263 |
+
" plt.xlabel(\"Position\")\n",
|
264 |
+
" plt.ylabel(\"Position\")\n",
|
265 |
+
" plt.tight_layout()\n",
|
266 |
+
" plt.plot()\n",
|
267 |
+
" plt.savefig(\"/content/Monster-Music-Transformer-Tokens-Embeddings-Plot.png\", bbox_inches=\"tight\")"
|
268 |
+
],
|
269 |
+
"metadata": {
|
270 |
+
"id": "V4s_G8yUL0cH",
|
271 |
+
"cellView": "form"
|
272 |
+
},
|
273 |
+
"execution_count": null,
|
274 |
+
"outputs": []
|
275 |
+
},
|
276 |
+
{
|
277 |
+
"cell_type": "markdown",
|
278 |
+
"source": [
|
279 |
+
"# (GENERATE)"
|
280 |
+
],
|
281 |
+
"metadata": {
|
282 |
+
"id": "7xNyANjZsCOi"
|
283 |
+
}
|
284 |
+
},
|
285 |
+
{
|
286 |
+
"cell_type": "markdown",
|
287 |
+
"source": [
|
288 |
+
"# (IMPROV)"
|
289 |
+
],
|
290 |
+
"metadata": {
|
291 |
+
"id": "BxepTeHVmmKO"
|
292 |
+
}
|
293 |
+
},
|
294 |
+
{
|
295 |
+
"cell_type": "code",
|
296 |
+
"source": [
|
297 |
+
"#@title Standard Improv Generator\n",
|
298 |
+
"\n",
|
299 |
+
"#@markdown Improv type\n",
|
300 |
+
"\n",
|
301 |
+
"improv_type = \"Random Freestyle\" # @param [\"Random Freestyle\", \"Freestyle without Drums\", \"Freestyle with Drums\", \"Custom\"]\n",
|
302 |
+
"\n",
|
303 |
+
"#@markdown Custom Improv settings\n",
|
304 |
+
"\n",
|
305 |
+
"first_note_MIDI_patch_number = 0 # @param {type:\"slider\", min:0, max:128, step:1}\n",
|
306 |
+
"add_drums = False #@param {type:\"boolean\"}\n",
|
307 |
+
"\n",
|
308 |
+
"#@markdown Generation settings\n",
|
309 |
+
"\n",
|
310 |
+
"number_of_tokens_tp_generate = 546 # @param {type:\"slider\", min:30, max:8190, step:3}\n",
|
311 |
+
"number_of_batches_to_generate = 4 #@param {type:\"slider\", min:1, max:16, step:1}\n",
|
312 |
+
"temperature = 0.9 # @param {type:\"slider\", min:0.1, max:1, step:0.05}\n",
|
313 |
+
"\n",
|
314 |
+
"#@markdown Other settings\n",
|
315 |
+
"\n",
|
316 |
+
"render_MIDI_to_audio = True # @param {type:\"boolean\"}\n",
|
317 |
+
"\n",
|
318 |
+
"print('=' * 70)\n",
|
319 |
+
"print('Monster Music Transformer Standard Improv Model Generator')\n",
|
320 |
+
"print('=' * 70)\n",
|
321 |
+
"\n",
|
322 |
+
"if improv_type == 'Random Freestyle':\n",
|
323 |
+
"\n",
|
324 |
+
" outy = [19077]\n",
|
325 |
+
"\n",
|
326 |
+
"if improv_type == 'Freestyle without Drums':\n",
|
327 |
+
"\n",
|
328 |
+
" outy = [19077, 18946]\n",
|
329 |
+
"\n",
|
330 |
+
"if improv_type == 'Freestyle with Drums':\n",
|
331 |
+
"\n",
|
332 |
+
" outy = [19077, 18947]\n",
|
333 |
+
"\n",
|
334 |
+
"if improv_type == 'Custom':\n",
|
335 |
+
"\n",
|
336 |
+
" if add_drums:\n",
|
337 |
+
" drumsp = 18947 # Yes\n",
|
338 |
+
" else:\n",
|
339 |
+
" drumsp = 18946 # No\n",
|
340 |
+
"\n",
|
341 |
+
" outy = [19077, drumsp, 18948+first_note_MIDI_patch_number]\n",
|
342 |
+
"\n",
|
343 |
+
"print('Selected Improv sequence:')\n",
|
344 |
+
"print(outy)\n",
|
345 |
+
"print('=' * 70)\n",
|
346 |
+
"\n",
|
347 |
+
"torch.cuda.empty_cache()\n",
|
348 |
+
"\n",
|
349 |
+
"inp = [outy] * number_of_batches_to_generate\n",
|
350 |
+
"\n",
|
351 |
+
"inp = torch.LongTensor(inp).cuda()\n",
|
352 |
+
"\n",
|
353 |
+
"with ctx:\n",
|
354 |
+
" out = model.generate(inp,\n",
|
355 |
+
" number_of_tokens_tp_generate,\n",
|
356 |
+
" temperature=temperature,\n",
|
357 |
+
" return_prime=True,\n",
|
358 |
+
" verbose=True)\n",
|
359 |
+
"\n",
|
360 |
+
"out0 = out.tolist()\n",
|
361 |
+
"\n",
|
362 |
+
"print('=' * 70)\n",
|
363 |
+
"print('Done!')\n",
|
364 |
+
"print('=' * 70)\n",
|
365 |
+
"\n",
|
366 |
+
"torch.cuda.empty_cache()\n",
|
367 |
+
"\n",
|
368 |
+
"#======================================================================\n",
|
369 |
+
"\n",
|
370 |
+
"print('Rendering results...')\n",
|
371 |
+
"\n",
|
372 |
+
"for i in range(number_of_batches_to_generate):\n",
|
373 |
+
"\n",
|
374 |
+
" print('=' * 70)\n",
|
375 |
+
" print('Batch #', i)\n",
|
376 |
+
" print('=' * 70)\n",
|
377 |
+
"\n",
|
378 |
+
" out1 = out0[i]\n",
|
379 |
+
"\n",
|
380 |
+
" print('Sample INTs', out1[:12])\n",
|
381 |
+
" print('=' * 70)\n",
|
382 |
+
"\n",
|
383 |
+
" if len(out1) != 0:\n",
|
384 |
+
"\n",
|
385 |
+
" song = out1\n",
|
386 |
+
" song_f = []\n",
|
387 |
+
"\n",
|
388 |
+
" time = 0\n",
|
389 |
+
" dur = 0\n",
|
390 |
+
" vel = 90\n",
|
391 |
+
" pitch = 0\n",
|
392 |
+
" channel = 0\n",
|
393 |
+
"\n",
|
394 |
+
" patches = [-1] * 16\n",
|
395 |
+
"\n",
|
396 |
+
" channels = [0] * 16\n",
|
397 |
+
" channels[9] = 1\n",
|
398 |
+
"\n",
|
399 |
+
" for ss in song:\n",
|
400 |
+
"\n",
|
401 |
+
" if 0 <= ss < 256:\n",
|
402 |
+
"\n",
|
403 |
+
" time += ss * 16\n",
|
404 |
+
"\n",
|
405 |
+
" if 256 <= ss < 2304:\n",
|
406 |
+
"\n",
|
407 |
+
" dur = ((ss-256) // 8) * 16\n",
|
408 |
+
" vel = (((ss-256) % 8)+1) * 15\n",
|
409 |
+
"\n",
|
410 |
+
" if 2304 <= ss < 18945:\n",
|
411 |
+
"\n",
|
412 |
+
" patch = (ss-2304) // 129\n",
|
413 |
+
"\n",
|
414 |
+
" if patch < 128:\n",
|
415 |
+
"\n",
|
416 |
+
" if patch not in patches:\n",
|
417 |
+
" if 0 in channels:\n",
|
418 |
+
" cha = channels.index(0)\n",
|
419 |
+
" channels[cha] = 1\n",
|
420 |
+
" else:\n",
|
421 |
+
" cha = 15\n",
|
422 |
+
"\n",
|
423 |
+
" patches[cha] = patch\n",
|
424 |
+
" channel = patches.index(patch)\n",
|
425 |
+
" else:\n",
|
426 |
+
" channel = patches.index(patch)\n",
|
427 |
+
"\n",
|
428 |
+
" if patch == 128:\n",
|
429 |
+
" channel = 9\n",
|
430 |
+
"\n",
|
431 |
+
" pitch = (ss-2304) % 129\n",
|
432 |
+
"\n",
|
433 |
+
" song_f.append(['note', time, dur, channel, pitch, vel, patch ])\n",
|
434 |
+
"\n",
|
435 |
+
" patches = [0 if x==-1 else x for x in patches]\n",
|
436 |
+
"\n",
|
437 |
+
" data = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,\n",
|
438 |
+
" output_signature = 'Monster Music Transformer',\n",
|
439 |
+
" output_file_name = '/content/Monster-Music-Transformer-Music-Composition_'+str(i),\n",
|
440 |
+
" track_name='Project Los Angeles',\n",
|
441 |
+
" list_of_MIDI_patches=patches\n",
|
442 |
+
" )\n",
|
443 |
+
"\n",
|
444 |
+
"\n",
|
445 |
+
" print('=' * 70)\n",
|
446 |
+
" print('Displaying resulting composition...')\n",
|
447 |
+
" print('=' * 70)\n",
|
448 |
+
"\n",
|
449 |
+
" fname = '/content/Monster-Music-Transformer-Music-Composition_'+str(i)\n",
|
450 |
+
"\n",
|
451 |
+
" if render_MIDI_to_audio:\n",
|
452 |
+
" midi_audio = midi_to_colab_audio(fname + '.mid')\n",
|
453 |
+
" display(Audio(midi_audio, rate=16000, normalize=False))\n",
|
454 |
+
"\n",
|
455 |
+
" TMIDIX.plot_ms_SONG(song_f, plot_title=fname)"
|
456 |
+
],
|
457 |
+
"metadata": {
|
458 |
+
"cellView": "form",
|
459 |
+
"id": "Jwxz-eaF0K1y"
|
460 |
+
},
|
461 |
+
"execution_count": null,
|
462 |
+
"outputs": []
|
463 |
+
},
|
464 |
+
{
|
465 |
+
"cell_type": "markdown",
|
466 |
+
"source": [
|
467 |
+
"# (CUSTOM MIDI)"
|
468 |
+
],
|
469 |
+
"metadata": {
|
470 |
+
"id": "Gt03VtO6uKkb"
|
471 |
+
}
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"cell_type": "code",
|
475 |
+
"execution_count": null,
|
476 |
+
"metadata": {
|
477 |
+
"id": "4QXbFLsKqSnt",
|
478 |
+
"cellView": "form"
|
479 |
+
},
|
480 |
+
"outputs": [],
|
481 |
+
"source": [
|
482 |
+
"#@title Load Seed MIDI\n",
|
483 |
+
"\n",
|
484 |
+
"#@markdown Press play button to to upload your own seed MIDI or to load one of the provided sample seed MIDIs from the dropdown list below\n",
|
485 |
+
"\n",
|
486 |
+
"select_seed_MIDI = \"Upload your own custom MIDI\" # @param [\"Upload your own custom MIDI\", \"Monster-Music-Transformer-Piano-Seed-1\", \"Monster-Music-Transformer-Piano-Seed-2\", \"Monster-Music-Transformer-Piano-Seed-3\", \"Monster-Music-Transformer-Piano-Seed-4\", \"Monster-Music-Transformer-Piano-Seed-5\", \"Monster-Music-Transformer-Piano-Seed-6\", \"Monster-Music-Transformer-MI-Seed-1\", \"Monster-Music-Transformer-MI-Seed-2\", \"Monster-Music-Transformer-MI-Seed-3\", \"Monster-Music-Transformer-MI-Seed-4\", \"Monster-Music-Transformer-MI-Seed-5\", \"Monster-Music-Transformer-MI-Seed-6\"]\n",
|
487 |
+
"render_MIDI_to_audio = False # @param {type:\"boolean\"}\n",
|
488 |
+
"\n",
|
489 |
+
"print('=' * 70)\n",
|
490 |
+
"print('Monster Music Transformer Seed MIDI Loader')\n",
|
491 |
+
"print('=' * 70)\n",
|
492 |
+
"\n",
|
493 |
+
"f = ''\n",
|
494 |
+
"\n",
|
495 |
+
"if select_seed_MIDI != \"Upload your own custom MIDI\":\n",
|
496 |
+
" print('Loading seed MIDI...')\n",
|
497 |
+
" f = '/content/Monster-MIDI-Dataset/Seeds/'+select_seed_MIDI+'.mid'\n",
|
498 |
+
"\n",
|
499 |
+
"else:\n",
|
500 |
+
" print('Upload your own custom MIDI...')\n",
|
501 |
+
" print('=' * 70)\n",
|
502 |
+
" uploaded_MIDI = files.upload()\n",
|
503 |
+
" if list(uploaded_MIDI.keys()):\n",
|
504 |
+
" f = list(uploaded_MIDI.keys())[0]\n",
|
505 |
+
"\n",
|
506 |
+
"if f != '':\n",
|
507 |
+
"\n",
|
508 |
+
" print('=' * 70)\n",
|
509 |
+
" print('File:', f)\n",
|
510 |
+
" print('=' * 70)\n",
|
511 |
+
"\n",
|
512 |
+
" #=======================================================\n",
|
513 |
+
" # START PROCESSING\n",
|
514 |
+
"\n",
|
515 |
+
" # Convering MIDI to ms score with MIDI.py module\n",
|
516 |
+
" score = TMIDIX.midi2single_track_ms_score(open(f, 'rb').read(), recalculate_channels=False)\n",
|
517 |
+
"\n",
|
518 |
+
" # INSTRUMENTS CONVERSION CYCLE\n",
|
519 |
+
" events_matrix = []\n",
|
520 |
+
" itrack = 1\n",
|
521 |
+
" patches = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]\n",
|
522 |
+
"\n",
|
523 |
+
" while itrack < len(score):\n",
|
524 |
+
" for event in score[itrack]:\n",
|
525 |
+
" if event[0] == 'note' or event[0] == 'patch_change':\n",
|
526 |
+
" events_matrix.append(event)\n",
|
527 |
+
" itrack += 1\n",
|
528 |
+
"\n",
|
529 |
+
" events_matrix.sort(key=lambda x: x[1])\n",
|
530 |
+
"\n",
|
531 |
+
" events_matrix1 = []\n",
|
532 |
+
"\n",
|
533 |
+
" for event in events_matrix:\n",
|
534 |
+
" if event[0] == 'patch_change':\n",
|
535 |
+
" patches[event[2]] = event[3]\n",
|
536 |
+
"\n",
|
537 |
+
" if event[0] == 'note':\n",
|
538 |
+
" event.extend([patches[event[3]]])\n",
|
539 |
+
"\n",
|
540 |
+
" if events_matrix1:\n",
|
541 |
+
" if (event[1] == events_matrix1[-1][1]):\n",
|
542 |
+
" if ([event[3], event[4]] != events_matrix1[-1][3:5]):\n",
|
543 |
+
" events_matrix1.append(event)\n",
|
544 |
+
" else:\n",
|
545 |
+
" events_matrix1.append(event)\n",
|
546 |
+
"\n",
|
547 |
+
" else:\n",
|
548 |
+
" events_matrix1.append(event)\n",
|
549 |
+
"\n",
|
550 |
+
" if len(events_matrix1) > 0:\n",
|
551 |
+
" if min([e[1] for e in events_matrix1]) >= 0 and min([e[2] for e in events_matrix1]) >= 0:\n",
|
552 |
+
"\n",
|
553 |
+
" #=======================================================\n",
|
554 |
+
" # PRE-PROCESSING\n",
|
555 |
+
"\n",
|
556 |
+
" # checking number of instruments in a composition\n",
|
557 |
+
" instruments_list_without_drums = list(set([y[3] for y in events_matrix1 if y[3] != 9]))\n",
|
558 |
+
" instruments_list = list(set([y[3] for y in events_matrix1]))\n",
|
559 |
+
"\n",
|
560 |
+
" if len(events_matrix1) > 0 and len(instruments_list_without_drums) > 0:\n",
|
561 |
+
"\n",
|
562 |
+
" #======================================\n",
|
563 |
+
"\n",
|
564 |
+
" events_matrix2 = []\n",
|
565 |
+
"\n",
|
566 |
+
" # Recalculating timings\n",
|
567 |
+
" for e in events_matrix1:\n",
|
568 |
+
"\n",
|
569 |
+
" # Original timings\n",
|
570 |
+
" e[1] = int(e[1] / 16)\n",
|
571 |
+
" e[2] = int(e[2] / 16)\n",
|
572 |
+
"\n",
|
573 |
+
" #===================================\n",
|
574 |
+
" # ORIGINAL COMPOSITION\n",
|
575 |
+
" #===================================\n",
|
576 |
+
"\n",
|
577 |
+
" # Sorting by patch, pitch, then by start-time\n",
|
578 |
+
"\n",
|
579 |
+
" events_matrix1.sort(key=lambda x: x[6])\n",
|
580 |
+
" events_matrix1.sort(key=lambda x: x[4], reverse=True)\n",
|
581 |
+
" events_matrix1.sort(key=lambda x: x[1])\n",
|
582 |
+
"\n",
|
583 |
+
" #=======================================================\n",
|
584 |
+
" # FINAL PROCESSING\n",
|
585 |
+
"\n",
|
586 |
+
" melody_chords = []\n",
|
587 |
+
" melody_chords2 = []\n",
|
588 |
+
"\n",
|
589 |
+
" # Break between compositions / Intro seq\n",
|
590 |
+
"\n",
|
591 |
+
" if 9 in instruments_list:\n",
|
592 |
+
" drums_present = 18947 # Yes\n",
|
593 |
+
" else:\n",
|
594 |
+
" drums_present = 18946 # No\n",
|
595 |
+
"\n",
|
596 |
+
" if events_matrix1[0][3] != 9:\n",
|
597 |
+
" pat = events_matrix1[0][6]\n",
|
598 |
+
" else:\n",
|
599 |
+
" pat = 128\n",
|
600 |
+
"\n",
|
601 |
+
" melody_chords.extend([19077, drums_present, 18948+pat, 0]) # Intro seq\n",
|
602 |
+
"\n",
|
603 |
+
" #=======================================================\n",
|
604 |
+
" # MAIN PROCESSING CYCLE\n",
|
605 |
+
" #=======================================================\n",
|
606 |
+
"\n",
|
607 |
+
" abs_time = 0\n",
|
608 |
+
"\n",
|
609 |
+
" pbar_time = 0\n",
|
610 |
+
"\n",
|
611 |
+
" pe = events_matrix1[0]\n",
|
612 |
+
"\n",
|
613 |
+
" chords_counter = 1\n",
|
614 |
+
"\n",
|
615 |
+
" comp_chords_len = len(list(set([y[1] for y in events_matrix1])))\n",
|
616 |
+
"\n",
|
617 |
+
" for e in events_matrix1:\n",
|
618 |
+
"\n",
|
619 |
+
" #=======================================================\n",
|
620 |
+
" # Timings...\n",
|
621 |
+
"\n",
|
622 |
+
" # Cliping all values...\n",
|
623 |
+
" delta_time = max(0, min(255, e[1]-pe[1]))\n",
|
624 |
+
"\n",
|
625 |
+
" # Durations and channels\n",
|
626 |
+
"\n",
|
627 |
+
" dur = max(0, min(255, e[2]))\n",
|
628 |
+
" cha = max(0, min(15, e[3]))\n",
|
629 |
+
"\n",
|
630 |
+
" # Patches\n",
|
631 |
+
" if cha == 9: # Drums patch will be == 128\n",
|
632 |
+
" pat = 128\n",
|
633 |
+
"\n",
|
634 |
+
" else:\n",
|
635 |
+
" pat = e[6]\n",
|
636 |
+
"\n",
|
637 |
+
" # Pitches\n",
|
638 |
+
"\n",
|
639 |
+
" ptc = max(1, min(127, e[4]))\n",
|
640 |
+
"\n",
|
641 |
+
" # Velocities\n",
|
642 |
+
"\n",
|
643 |
+
" # Calculating octo-velocity\n",
|
644 |
+
" vel = max(8, min(127, e[5]))\n",
|
645 |
+
" velocity = round(vel / 15)-1\n",
|
646 |
+
"\n",
|
647 |
+
" #=======================================================\n",
|
648 |
+
" # Outro seq\n",
|
649 |
+
"\n",
|
650 |
+
" # if ((comp_chords_len - chords_counter) == 50) and (delta_time != 0):\n",
|
651 |
+
" # out_t = 18946+delta_time\n",
|
652 |
+
" # out_p = 19202+ptc\n",
|
653 |
+
" # melody_chords.extend([18945, out_t, out_p]) # outro seq\n",
|
654 |
+
"\n",
|
655 |
+
"\n",
|
656 |
+
" # if delta_time != 0:\n",
|
657 |
+
" # chords_counter += 1\n",
|
658 |
+
"\n",
|
659 |
+
" #=======================================================\n",
|
660 |
+
" # FINAL NOTE SEQ\n",
|
661 |
+
"\n",
|
662 |
+
" # Writing final note asynchronously\n",
|
663 |
+
"\n",
|
664 |
+
" dur_vel = (8 * dur) + velocity\n",
|
665 |
+
" pat_ptc = (129 * pat) + ptc\n",
|
666 |
+
"\n",
|
667 |
+
" if delta_time != 0:\n",
|
668 |
+
" melody_chords.extend([delta_time, dur_vel+256, pat_ptc+2304])\n",
|
669 |
+
" else:\n",
|
670 |
+
" melody_chords.extend([dur_vel+256, pat_ptc+2304])\n",
|
671 |
+
" melody_chords2.append([delta_time, dur_vel+256, pat_ptc+2304])\n",
|
672 |
+
"\n",
|
673 |
+
" pe = e\n",
|
674 |
+
"\n",
|
675 |
+
" #=======================================================\n",
|
676 |
+
"\n",
|
677 |
+
" # melody_chords.extend([19462, 19462, 19462]) # EOS\n",
|
678 |
+
"\n",
|
679 |
+
" #=======================================================\n",
|
680 |
+
"\n",
|
681 |
+
" # TOTAL DICTIONARY SIZE 19462+1=19463\n",
|
682 |
+
" #=======================================================\n",
|
683 |
+
"\n",
|
684 |
+
" #=======================================================\n",
|
685 |
+
"\n",
|
686 |
+
" song = melody_chords\n",
|
687 |
+
"\n",
|
688 |
+
" song_f = []\n",
|
689 |
+
"\n",
|
690 |
+
" time = 0\n",
|
691 |
+
" dur = 0\n",
|
692 |
+
" vel = 90\n",
|
693 |
+
" pitch = 0\n",
|
694 |
+
" channel = 0\n",
|
695 |
+
"\n",
|
696 |
+
" patches = [-1] * 16\n",
|
697 |
+
"\n",
|
698 |
+
" channels = [0] * 16\n",
|
699 |
+
" channels[9] = 1\n",
|
700 |
+
"\n",
|
701 |
+
" for ss in song:\n",
|
702 |
+
"\n",
|
703 |
+
" if 0 <= ss < 256:\n",
|
704 |
+
"\n",
|
705 |
+
" time += ss * 16\n",
|
706 |
+
"\n",
|
707 |
+
" if 256 <= ss < 2304:\n",
|
708 |
+
"\n",
|
709 |
+
" dur = ((ss-256) // 8) * 16\n",
|
710 |
+
" vel = (((ss-256) % 8)+1) * 15\n",
|
711 |
+
"\n",
|
712 |
+
" if 2304 <= ss < 18945:\n",
|
713 |
+
"\n",
|
714 |
+
" patch = (ss-2304) // 129\n",
|
715 |
+
"\n",
|
716 |
+
" if patch < 128:\n",
|
717 |
+
"\n",
|
718 |
+
" if patch not in patches:\n",
|
719 |
+
" if 0 in channels:\n",
|
720 |
+
" cha = channels.index(0)\n",
|
721 |
+
" channels[cha] = 1\n",
|
722 |
+
" else:\n",
|
723 |
+
" cha = 15\n",
|
724 |
+
"\n",
|
725 |
+
" patches[cha] = patch\n",
|
726 |
+
" channel = patches.index(patch)\n",
|
727 |
+
" else:\n",
|
728 |
+
" channel = patches.index(patch)\n",
|
729 |
+
"\n",
|
730 |
+
" if patch == 128:\n",
|
731 |
+
" channel = 9\n",
|
732 |
+
"\n",
|
733 |
+
" pitch = (ss-2304) % 129\n",
|
734 |
+
"\n",
|
735 |
+
" song_f.append(['note', time, dur, channel, pitch, vel, patch ])\n",
|
736 |
+
"\n",
|
737 |
+
" patches = [0 if x==-1 else x for x in patches]\n",
|
738 |
+
"\n",
|
739 |
+
" detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,\n",
|
740 |
+
" output_signature = 'Monster Music Transformer',\n",
|
741 |
+
" output_file_name = '/content/Monster-Music-Transformer-Seed-Composition',\n",
|
742 |
+
" track_name='Project Los Angeles',\n",
|
743 |
+
" list_of_MIDI_patches=patches\n",
|
744 |
+
" )\n",
|
745 |
+
"\n",
|
746 |
+
" #=======================================================\n",
|
747 |
+
"\n",
|
748 |
+
" print('=' * 70)\n",
|
749 |
+
" print('Composition stats:')\n",
|
750 |
+
" print('Composition has', len(melody_chords2), 'notes')\n",
|
751 |
+
" print('Composition has', len(melody_chords), 'tokens')\n",
|
752 |
+
" print('Composition MIDI patches:', sorted(list(set([((y-2304) // 129) for y in melody_chords if 2304 <= y < 18945]))))\n",
|
753 |
+
" print('=' * 70)\n",
|
754 |
+
"\n",
|
755 |
+
" print('Displaying resulting composition...')\n",
|
756 |
+
" print('=' * 70)\n",
|
757 |
+
"\n",
|
758 |
+
" fname = '/content/Monster-Music-Transformer-Seed-Composition'\n",
|
759 |
+
"\n",
|
760 |
+
" if render_MIDI_to_audio:\n",
|
761 |
+
" midi_audio = midi_to_colab_audio(fname + '.mid')\n",
|
762 |
+
" display(Audio(midi_audio, rate=16000, normalize=False))\n",
|
763 |
+
"\n",
|
764 |
+
" TMIDIX.plot_ms_SONG(song_f, plot_title=fname)\n",
|
765 |
+
"\n",
|
766 |
+
"else:\n",
|
767 |
+
" print('=' * 70)"
|
768 |
+
]
|
769 |
+
},
|
770 |
+
{
|
771 |
+
"cell_type": "markdown",
|
772 |
+
"source": [
|
773 |
+
"# (CONTINUATION)"
|
774 |
+
],
|
775 |
+
"metadata": {
|
776 |
+
"id": "fmm3KjOtoVp9"
|
777 |
+
}
|
778 |
+
},
|
779 |
+
{
|
780 |
+
"cell_type": "code",
|
781 |
+
"execution_count": null,
|
782 |
+
"metadata": {
|
783 |
+
"id": "dkvXYwR_qSnx",
|
784 |
+
"cellView": "form"
|
785 |
+
},
|
786 |
+
"outputs": [],
|
787 |
+
"source": [
|
788 |
+
"#@title Standard Continuation\n",
|
789 |
+
"\n",
|
790 |
+
"#@markdown Generation settings\n",
|
791 |
+
"\n",
|
792 |
+
"try_to_generate_outro = False #@param {type:\"boolean\"}\n",
|
793 |
+
"number_of_prime_tokens = 7191 # @param {type:\"slider\", min:3, max:8190, step:3}\n",
|
794 |
+
"number_of_tokens_to_generate = 504 # @param {type:\"slider\", min:30, max:8190, step:3}\n",
|
795 |
+
"number_of_batches_to_generate = 4 #@param {type:\"slider\", min:1, max:16, step:1}\n",
|
796 |
+
"temperature = 0.9 # @param {type:\"slider\", min:0.1, max:1, step:0.05}\n",
|
797 |
+
"\n",
|
798 |
+
"#@markdown Other settings\n",
|
799 |
+
"include_prime_tokens_in_generated_output = False #@param {type:\"boolean\"}\n",
|
800 |
+
"allow_model_to_stop_generation_if_needed = False #@param {type:\"boolean\"}\n",
|
801 |
+
"render_MIDI_to_audio = True # @param {type:\"boolean\"}\n",
|
802 |
+
"\n",
|
803 |
+
"print('=' * 70)\n",
|
804 |
+
"print('Monster Music Transformer Standard Continuation Model Generator')\n",
|
805 |
+
"print('=' * 70)\n",
|
806 |
+
"\n",
|
807 |
+
"if allow_model_to_stop_generation_if_needed:\n",
|
808 |
+
" min_stop_token = 19078\n",
|
809 |
+
"else:\n",
|
810 |
+
" min_stop_token = None\n",
|
811 |
+
"\n",
|
812 |
+
"outy = melody_chords[:number_of_prime_tokens]\n",
|
813 |
+
"\n",
|
814 |
+
"if try_to_generate_outro:\n",
|
815 |
+
" outy.extend([18945])\n",
|
816 |
+
"\n",
|
817 |
+
"torch.cuda.empty_cache()\n",
|
818 |
+
"\n",
|
819 |
+
"inp = [outy] * number_of_batches_to_generate\n",
|
820 |
+
"\n",
|
821 |
+
"inp = torch.LongTensor(inp).cuda()\n",
|
822 |
+
"\n",
|
823 |
+
"with ctx:\n",
|
824 |
+
" out = model.generate(inp,\n",
|
825 |
+
" number_of_tokens_to_generate,\n",
|
826 |
+
" temperature=temperature,\n",
|
827 |
+
" return_prime=include_prime_tokens_in_generated_output,\n",
|
828 |
+
" eos_token=min_stop_token,\n",
|
829 |
+
" verbose=True)\n",
|
830 |
+
"\n",
|
831 |
+
"out0 = out.tolist()\n",
|
832 |
+
"\n",
|
833 |
+
"torch.cuda.empty_cache()\n",
|
834 |
+
"\n",
|
835 |
+
"print('=' * 70)\n",
|
836 |
+
"print('Done!')\n",
|
837 |
+
"print('=' * 70)\n",
|
838 |
+
"\n",
|
839 |
+
"#======================================================================\n",
|
840 |
+
"print('Rendering results...')\n",
|
841 |
+
"\n",
|
842 |
+
"for i in range(number_of_batches_to_generate):\n",
|
843 |
+
"\n",
|
844 |
+
" print('=' * 70)\n",
|
845 |
+
" print('Batch #', i)\n",
|
846 |
+
" print('=' * 70)\n",
|
847 |
+
"\n",
|
848 |
+
" out1 = out0[i]\n",
|
849 |
+
"\n",
|
850 |
+
" print('Sample INTs', out1[:12])\n",
|
851 |
+
" print('=' * 70)\n",
|
852 |
+
"\n",
|
853 |
+
" if len(out) != 0:\n",
|
854 |
+
"\n",
|
855 |
+
" song = out1\n",
|
856 |
+
" song_f = []\n",
|
857 |
+
"\n",
|
858 |
+
" time = 0\n",
|
859 |
+
" dur = 0\n",
|
860 |
+
" vel = 90\n",
|
861 |
+
" pitch = 0\n",
|
862 |
+
" channel = 0\n",
|
863 |
+
"\n",
|
864 |
+
" patches = [-1] * 16\n",
|
865 |
+
"\n",
|
866 |
+
" channels = [0] * 16\n",
|
867 |
+
" channels[9] = 1\n",
|
868 |
+
"\n",
|
869 |
+
" for ss in song:\n",
|
870 |
+
"\n",
|
871 |
+
" if 0 <= ss < 256:\n",
|
872 |
+
"\n",
|
873 |
+
" time += ss * 16\n",
|
874 |
+
"\n",
|
875 |
+
" if 256 <= ss < 2304:\n",
|
876 |
+
"\n",
|
877 |
+
" dur = ((ss-256) // 8) * 16\n",
|
878 |
+
" vel = (((ss-256) % 8)+1) * 15\n",
|
879 |
+
"\n",
|
880 |
+
" if 2304 <= ss < 18945:\n",
|
881 |
+
"\n",
|
882 |
+
" patch = (ss-2304) // 129\n",
|
883 |
+
"\n",
|
884 |
+
" if patch < 128:\n",
|
885 |
+
"\n",
|
886 |
+
" if patch not in patches:\n",
|
887 |
+
" if 0 in channels:\n",
|
888 |
+
" cha = channels.index(0)\n",
|
889 |
+
" channels[cha] = 1\n",
|
890 |
+
" else:\n",
|
891 |
+
" cha = 15\n",
|
892 |
+
"\n",
|
893 |
+
" patches[cha] = patch\n",
|
894 |
+
" channel = patches.index(patch)\n",
|
895 |
+
" else:\n",
|
896 |
+
" channel = patches.index(patch)\n",
|
897 |
+
"\n",
|
898 |
+
" if patch == 128:\n",
|
899 |
+
" channel = 9\n",
|
900 |
+
"\n",
|
901 |
+
" pitch = (ss-2304) % 129\n",
|
902 |
+
"\n",
|
903 |
+
" song_f.append(['note', time, dur, channel, pitch, vel, patch ])\n",
|
904 |
+
"\n",
|
905 |
+
" patches = [0 if x==-1 else x for x in patches]\n",
|
906 |
+
"\n",
|
907 |
+
" detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,\n",
|
908 |
+
" output_signature = 'Monster Music Transformer',\n",
|
909 |
+
" output_file_name = '/content/Monster-Music-Transformer-Music-Composition_'+str(i),\n",
|
910 |
+
" track_name='Project Los Angeles',\n",
|
911 |
+
" list_of_MIDI_patches=patches\n",
|
912 |
+
" )\n",
|
913 |
+
" print('=' * 70)\n",
|
914 |
+
" print('Displaying resulting composition...')\n",
|
915 |
+
" print('=' * 70)\n",
|
916 |
+
"\n",
|
917 |
+
" fname = '/content/Monster-Music-Transformer-Music-Composition_'+str(i)\n",
|
918 |
+
"\n",
|
919 |
+
" if render_MIDI_to_audio:\n",
|
920 |
+
" midi_audio = midi_to_colab_audio(fname + '.mid')\n",
|
921 |
+
" display(Audio(midi_audio, rate=16000, normalize=False))\n",
|
922 |
+
"\n",
|
923 |
+
" TMIDIX.plot_ms_SONG(song_f, plot_title=fname)"
|
924 |
+
]
|
925 |
+
},
|
926 |
+
{
|
927 |
+
"cell_type": "markdown",
|
928 |
+
"source": [
|
929 |
+
"# Congrats! You did it! :)"
|
930 |
+
],
|
931 |
+
"metadata": {
|
932 |
+
"id": "eoWDEy6CwDr6"
|
933 |
+
}
|
934 |
+
}
|
935 |
+
],
|
936 |
+
"metadata": {
|
937 |
+
"accelerator": "GPU",
|
938 |
+
"colab": {
|
939 |
+
"private_outputs": true,
|
940 |
+
"provenance": [],
|
941 |
+
"gpuType": "A100",
|
942 |
+
"gpuClass": "premium",
|
943 |
+
"machine_shape": "hm"
|
944 |
+
},
|
945 |
+
"kernelspec": {
|
946 |
+
"display_name": "Python 3",
|
947 |
+
"name": "python3"
|
948 |
+
},
|
949 |
+
"language_info": {
|
950 |
+
"codemirror_mode": {
|
951 |
+
"name": "ipython",
|
952 |
+
"version": 3
|
953 |
+
},
|
954 |
+
"file_extension": ".py",
|
955 |
+
"mimetype": "text/x-python",
|
956 |
+
"name": "python",
|
957 |
+
"nbconvert_exporter": "python",
|
958 |
+
"pygments_lexer": "ipython3",
|
959 |
+
"version": "3.9.13"
|
960 |
+
}
|
961 |
+
},
|
962 |
+
"nbformat": 4,
|
963 |
+
"nbformat_minor": 0
|
964 |
+
}
|
monster_music_transformer.py
ADDED
@@ -0,0 +1,809 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""Monster_Music_Transformer.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colaboratory.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1_fs1W2cuXxiMKznQIP3wtUxSIbxt71Nk
|
8 |
+
|
9 |
+
# Monster Music Transformer (ver. 1.0)
|
10 |
+
|
11 |
+
***
|
12 |
+
|
13 |
+
Powered by tegridy-tools: https://github.com/asigalov61/tegridy-tools
|
14 |
+
|
15 |
+
***
|
16 |
+
|
17 |
+
WARNING: This complete implementation is a functioning model of the Artificial Intelligence. Please excercise great humility, care, and respect. https://www.nscai.gov/
|
18 |
+
|
19 |
+
***
|
20 |
+
|
21 |
+
#### Project Los Angeles
|
22 |
+
|
23 |
+
#### Tegridy Code 2024
|
24 |
+
|
25 |
+
***
|
26 |
+
|
27 |
+
# (GPU CHECK)
|
28 |
+
"""
|
29 |
+
|
30 |
+
#@title NVIDIA GPU check
|
31 |
+
!nvidia-smi
|
32 |
+
|
33 |
+
"""# (SETUP ENVIRONMENT)"""
|
34 |
+
|
35 |
+
#@title Install dependencies
|
36 |
+
!git clone --depth 1 https://github.com/asigalov61/Monster-MIDI-Dataset
|
37 |
+
!pip install huggingface_hub
|
38 |
+
!pip install einops
|
39 |
+
!pip install torch-summary
|
40 |
+
!apt install fluidsynth #Pip does not work for some reason. Only apt works
|
41 |
+
|
42 |
+
# Commented out IPython magic to ensure Python compatibility.
|
43 |
+
#@title Import modules
|
44 |
+
|
45 |
+
print('=' * 70)
|
46 |
+
print('Loading core Monster Music Transformer modules...')
|
47 |
+
|
48 |
+
import os
|
49 |
+
import copy
|
50 |
+
import pickle
|
51 |
+
import secrets
|
52 |
+
import statistics
|
53 |
+
from time import time
|
54 |
+
import tqdm
|
55 |
+
|
56 |
+
print('=' * 70)
|
57 |
+
print('Loading main Monster Music Transformer modules...')
|
58 |
+
import torch
|
59 |
+
|
60 |
+
# %cd /content/Monster-MIDI-Dataset
|
61 |
+
|
62 |
+
import TMIDIX
|
63 |
+
|
64 |
+
from midi_to_colab_audio import midi_to_colab_audio
|
65 |
+
|
66 |
+
from x_transformer_1_27_16 import *
|
67 |
+
|
68 |
+
import random
|
69 |
+
|
70 |
+
# %cd /content/
|
71 |
+
print('=' * 70)
|
72 |
+
print('Loading aux Monster Music Transformer modules...')
|
73 |
+
|
74 |
+
import matplotlib.pyplot as plt
|
75 |
+
|
76 |
+
from torchsummary import summary
|
77 |
+
from sklearn import metrics
|
78 |
+
|
79 |
+
from IPython.display import Audio, display
|
80 |
+
|
81 |
+
from huggingface_hub import hf_hub_download
|
82 |
+
|
83 |
+
from google.colab import files
|
84 |
+
|
85 |
+
print('=' * 70)
|
86 |
+
print('Done!')
|
87 |
+
print('Enjoy! :)')
|
88 |
+
print('=' * 70)
|
89 |
+
|
90 |
+
"""# (LOAD MODEL)"""
|
91 |
+
|
92 |
+
#@title Load Monster Music Transformer Pre-Trained Model
|
93 |
+
|
94 |
+
#@markdown Choose model
|
95 |
+
|
96 |
+
select_model_to_load = "651M-32L-Fast-Large" # @param ["651M-32L-Fast-Large"]
|
97 |
+
|
98 |
+
#@markdown Model precision option
|
99 |
+
|
100 |
+
model_precision = "bfloat16" # @param ["bfloat16", "float16"]
|
101 |
+
|
102 |
+
#@markdown bfloat16 == Half precision/faster speed (if supported, otherwise the model will default to float16)
|
103 |
+
|
104 |
+
#@markdown float16 == Full precision/fast speed
|
105 |
+
|
106 |
+
plot_tokens_embeddings = "None" # @param ["None", "Start Times", "Durations Velocities", "Piano Pitches", "Drums Pitches", "Aux"]
|
107 |
+
|
108 |
+
print('=' * 70)
|
109 |
+
print('Loading Monster Music Transformer', select_model_to_load,'Pre-Trained Model...')
|
110 |
+
print('Please wait...')
|
111 |
+
print('=' * 70)
|
112 |
+
|
113 |
+
full_path_to_models_dir = "/content/Monster-MIDI-Dataset/"
|
114 |
+
|
115 |
+
if select_model_to_load == '651M-32L-Fast-Large':
|
116 |
+
|
117 |
+
model_checkpoint_file_name = 'Monster_Music_Transformer_Large_Trained_Model_22501_steps_0.3419_loss_0.9121_acc.pth'
|
118 |
+
model_path = full_path_to_models_dir+'/'+model_checkpoint_file_name
|
119 |
+
num_layers = 36
|
120 |
+
if os.path.isfile(model_path):
|
121 |
+
print('Model already exists...')
|
122 |
+
|
123 |
+
else:
|
124 |
+
hf_hub_download(repo_id='asigalov61/Monster-Music-Transformer',
|
125 |
+
filename=model_checkpoint_file_name,
|
126 |
+
local_dir='/content/Monster-MIDI-Dataset',
|
127 |
+
local_dir_use_symlinks=False)
|
128 |
+
|
129 |
+
print('=' * 70)
|
130 |
+
print('Instantiating model...')
|
131 |
+
|
132 |
+
device_type = 'cuda'
|
133 |
+
|
134 |
+
if model_precision == 'bfloat16' and torch.cuda.is_bf16_supported():
|
135 |
+
dtype = 'bfloat16'
|
136 |
+
else:
|
137 |
+
dtype = 'float16'
|
138 |
+
|
139 |
+
if model_precision == 'float16':
|
140 |
+
dtype = 'float16'
|
141 |
+
|
142 |
+
ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
|
143 |
+
ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype)
|
144 |
+
|
145 |
+
SEQ_LEN = 8192
|
146 |
+
|
147 |
+
# instantiate the model
|
148 |
+
|
149 |
+
model = TransformerWrapper(
|
150 |
+
num_tokens = 19080,
|
151 |
+
max_seq_len = SEQ_LEN,
|
152 |
+
attn_layers = Decoder(dim = 1024, depth = num_layers, heads = 32, attn_flash=True)
|
153 |
+
)
|
154 |
+
|
155 |
+
model = AutoregressiveWrapper(model, ignore_index=19079)
|
156 |
+
|
157 |
+
model.cuda()
|
158 |
+
print('=' * 70)
|
159 |
+
|
160 |
+
print('Loading model checkpoint...')
|
161 |
+
|
162 |
+
model.load_state_dict(torch.load(model_path))
|
163 |
+
print('=' * 70)
|
164 |
+
|
165 |
+
model.eval()
|
166 |
+
|
167 |
+
print('Done!')
|
168 |
+
print('=' * 70)
|
169 |
+
|
170 |
+
print('Model will use', dtype, 'precision...')
|
171 |
+
print('=' * 70)
|
172 |
+
|
173 |
+
# Model stats
|
174 |
+
print('Model summary...')
|
175 |
+
summary(model)
|
176 |
+
|
177 |
+
# Plot Token Embeddings
|
178 |
+
if plot_tokens_embeddings != 'None':
|
179 |
+
tok_emb = model.net.token_emb.emb.weight.detach().cpu().tolist()
|
180 |
+
|
181 |
+
if plot_tokens_embeddings == 'Start Times':
|
182 |
+
tok_range = [0, 256]
|
183 |
+
|
184 |
+
elif plot_tokens_embeddings == 'Durations Velocities':
|
185 |
+
tok_range = [256, 2304]
|
186 |
+
|
187 |
+
elif plot_tokens_embeddings == 'Piano Pitches':
|
188 |
+
tok_range = [2304, 2304+128]
|
189 |
+
|
190 |
+
elif plot_tokens_embeddings == 'Drums Pitches':
|
191 |
+
tok_range = [18945-128, 18945]
|
192 |
+
|
193 |
+
elif plot_tokens_embeddings == 'Aux':
|
194 |
+
tok_range = [18945, 19079]
|
195 |
+
|
196 |
+
if plot_tokens_embeddings != 'None':
|
197 |
+
|
198 |
+
tok_emb1 = []
|
199 |
+
|
200 |
+
for t in tok_emb[tok_range[0]:tok_range[1]]:
|
201 |
+
tok_emb1.append(t)
|
202 |
+
|
203 |
+
cos_sim = metrics.pairwise_distances(
|
204 |
+
tok_emb1, metric='cosine'
|
205 |
+
)
|
206 |
+
plt.figure(figsize=(7, 7))
|
207 |
+
plt.imshow(cos_sim, cmap="inferno", interpolation="nearest")
|
208 |
+
im_ratio = cos_sim.shape[0] / cos_sim.shape[1]
|
209 |
+
plt.colorbar(fraction=0.046 * im_ratio, pad=0.04)
|
210 |
+
plt.xlabel("Position")
|
211 |
+
plt.ylabel("Position")
|
212 |
+
plt.tight_layout()
|
213 |
+
plt.plot()
|
214 |
+
plt.savefig("/content/Monster-Music-Transformer-Tokens-Embeddings-Plot.png", bbox_inches="tight")
|
215 |
+
|
216 |
+
"""# (GENERATE)
|
217 |
+
|
218 |
+
# (IMPROV)
|
219 |
+
"""
|
220 |
+
|
221 |
+
#@title Standard Improv Generator
|
222 |
+
|
223 |
+
#@markdown Improv type
|
224 |
+
|
225 |
+
improv_type = "Random Freestyle" # @param ["Random Freestyle", "Freestyle without Drums", "Freestyle with Drums", "Custom"]
|
226 |
+
|
227 |
+
#@markdown Custom Improv settings
|
228 |
+
|
229 |
+
first_note_MIDI_patch_number = 0 # @param {type:"slider", min:0, max:128, step:1}
|
230 |
+
add_drums = False #@param {type:"boolean"}
|
231 |
+
|
232 |
+
#@markdown Generation settings
|
233 |
+
|
234 |
+
number_of_tokens_tp_generate = 546 # @param {type:"slider", min:30, max:8190, step:3}
|
235 |
+
number_of_batches_to_generate = 4 #@param {type:"slider", min:1, max:16, step:1}
|
236 |
+
temperature = 0.9 # @param {type:"slider", min:0.1, max:1, step:0.05}
|
237 |
+
|
238 |
+
#@markdown Other settings
|
239 |
+
|
240 |
+
render_MIDI_to_audio = True # @param {type:"boolean"}
|
241 |
+
|
242 |
+
print('=' * 70)
|
243 |
+
print('Monster Music Transformer Standard Improv Model Generator')
|
244 |
+
print('=' * 70)
|
245 |
+
|
246 |
+
if improv_type == 'Random Freestyle':
|
247 |
+
|
248 |
+
outy = [19077]
|
249 |
+
|
250 |
+
if improv_type == 'Freestyle without Drums':
|
251 |
+
|
252 |
+
outy = [19077, 18946]
|
253 |
+
|
254 |
+
if improv_type == 'Freestyle with Drums':
|
255 |
+
|
256 |
+
outy = [19077, 18947]
|
257 |
+
|
258 |
+
if improv_type == 'Custom':
|
259 |
+
|
260 |
+
if add_drums:
|
261 |
+
drumsp = 18947 # Yes
|
262 |
+
else:
|
263 |
+
drumsp = 18946 # No
|
264 |
+
|
265 |
+
outy = [19077, drumsp, 18948+first_note_MIDI_patch_number]
|
266 |
+
|
267 |
+
print('Selected Improv sequence:')
|
268 |
+
print(outy)
|
269 |
+
print('=' * 70)
|
270 |
+
|
271 |
+
torch.cuda.empty_cache()
|
272 |
+
|
273 |
+
inp = [outy] * number_of_batches_to_generate
|
274 |
+
|
275 |
+
inp = torch.LongTensor(inp).cuda()
|
276 |
+
|
277 |
+
with ctx:
|
278 |
+
out = model.generate(inp,
|
279 |
+
number_of_tokens_tp_generate,
|
280 |
+
temperature=temperature,
|
281 |
+
return_prime=True,
|
282 |
+
verbose=True)
|
283 |
+
|
284 |
+
out0 = out.tolist()
|
285 |
+
|
286 |
+
print('=' * 70)
|
287 |
+
print('Done!')
|
288 |
+
print('=' * 70)
|
289 |
+
|
290 |
+
torch.cuda.empty_cache()
|
291 |
+
|
292 |
+
#======================================================================
|
293 |
+
|
294 |
+
print('Rendering results...')
|
295 |
+
|
296 |
+
for i in range(number_of_batches_to_generate):
|
297 |
+
|
298 |
+
print('=' * 70)
|
299 |
+
print('Batch #', i)
|
300 |
+
print('=' * 70)
|
301 |
+
|
302 |
+
out1 = out0[i]
|
303 |
+
|
304 |
+
print('Sample INTs', out1[:12])
|
305 |
+
print('=' * 70)
|
306 |
+
|
307 |
+
if len(out1) != 0:
|
308 |
+
|
309 |
+
song = out1
|
310 |
+
song_f = []
|
311 |
+
|
312 |
+
time = 0
|
313 |
+
dur = 0
|
314 |
+
vel = 90
|
315 |
+
pitch = 0
|
316 |
+
channel = 0
|
317 |
+
|
318 |
+
patches = [-1] * 16
|
319 |
+
|
320 |
+
channels = [0] * 16
|
321 |
+
channels[9] = 1
|
322 |
+
|
323 |
+
for ss in song:
|
324 |
+
|
325 |
+
if 0 <= ss < 256:
|
326 |
+
|
327 |
+
time += ss * 16
|
328 |
+
|
329 |
+
if 256 <= ss < 2304:
|
330 |
+
|
331 |
+
dur = ((ss-256) // 8) * 16
|
332 |
+
vel = (((ss-256) % 8)+1) * 15
|
333 |
+
|
334 |
+
if 2304 <= ss < 18945:
|
335 |
+
|
336 |
+
patch = (ss-2304) // 129
|
337 |
+
|
338 |
+
if patch < 128:
|
339 |
+
|
340 |
+
if patch not in patches:
|
341 |
+
if 0 in channels:
|
342 |
+
cha = channels.index(0)
|
343 |
+
channels[cha] = 1
|
344 |
+
else:
|
345 |
+
cha = 15
|
346 |
+
|
347 |
+
patches[cha] = patch
|
348 |
+
channel = patches.index(patch)
|
349 |
+
else:
|
350 |
+
channel = patches.index(patch)
|
351 |
+
|
352 |
+
if patch == 128:
|
353 |
+
channel = 9
|
354 |
+
|
355 |
+
pitch = (ss-2304) % 129
|
356 |
+
|
357 |
+
song_f.append(['note', time, dur, channel, pitch, vel, patch ])
|
358 |
+
|
359 |
+
patches = [0 if x==-1 else x for x in patches]
|
360 |
+
|
361 |
+
data = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,
|
362 |
+
output_signature = 'Monster Music Transformer',
|
363 |
+
output_file_name = '/content/Monster-Music-Transformer-Music-Composition_'+str(i),
|
364 |
+
track_name='Project Los Angeles',
|
365 |
+
list_of_MIDI_patches=patches
|
366 |
+
)
|
367 |
+
|
368 |
+
|
369 |
+
print('=' * 70)
|
370 |
+
print('Displaying resulting composition...')
|
371 |
+
print('=' * 70)
|
372 |
+
|
373 |
+
fname = '/content/Monster-Music-Transformer-Music-Composition_'+str(i)
|
374 |
+
|
375 |
+
if render_MIDI_to_audio:
|
376 |
+
midi_audio = midi_to_colab_audio(fname + '.mid')
|
377 |
+
display(Audio(midi_audio, rate=16000, normalize=False))
|
378 |
+
|
379 |
+
TMIDIX.plot_ms_SONG(song_f, plot_title=fname)
|
380 |
+
|
381 |
+
"""# (CUSTOM MIDI)"""
|
382 |
+
|
383 |
+
#@title Load Seed MIDI
|
384 |
+
|
385 |
+
#@markdown Press play button to to upload your own seed MIDI or to load one of the provided sample seed MIDIs from the dropdown list below
|
386 |
+
|
387 |
+
select_seed_MIDI = "Upload your own custom MIDI" # @param ["Upload your own custom MIDI", "Monster-Music-Transformer-Piano-Seed-1", "Monster-Music-Transformer-Piano-Seed-2", "Monster-Music-Transformer-Piano-Seed-3", "Monster-Music-Transformer-Piano-Seed-4", "Monster-Music-Transformer-Piano-Seed-5", "Monster-Music-Transformer-Piano-Seed-6", "Monster-Music-Transformer-MI-Seed-1", "Monster-Music-Transformer-MI-Seed-2", "Monster-Music-Transformer-MI-Seed-3", "Monster-Music-Transformer-MI-Seed-4", "Monster-Music-Transformer-MI-Seed-5", "Monster-Music-Transformer-MI-Seed-6"]
|
388 |
+
render_MIDI_to_audio = False # @param {type:"boolean"}
|
389 |
+
|
390 |
+
print('=' * 70)
|
391 |
+
print('Monster Music Transformer Seed MIDI Loader')
|
392 |
+
print('=' * 70)
|
393 |
+
|
394 |
+
f = ''
|
395 |
+
|
396 |
+
if select_seed_MIDI != "Upload your own custom MIDI":
|
397 |
+
print('Loading seed MIDI...')
|
398 |
+
f = '/content/Monster-MIDI-Dataset/Seeds/'+select_seed_MIDI+'.mid'
|
399 |
+
|
400 |
+
else:
|
401 |
+
print('Upload your own custom MIDI...')
|
402 |
+
print('=' * 70)
|
403 |
+
uploaded_MIDI = files.upload()
|
404 |
+
if list(uploaded_MIDI.keys()):
|
405 |
+
f = list(uploaded_MIDI.keys())[0]
|
406 |
+
|
407 |
+
if f != '':
|
408 |
+
|
409 |
+
print('=' * 70)
|
410 |
+
print('File:', f)
|
411 |
+
print('=' * 70)
|
412 |
+
|
413 |
+
#=======================================================
|
414 |
+
# START PROCESSING
|
415 |
+
|
416 |
+
# Convering MIDI to ms score with MIDI.py module
|
417 |
+
score = TMIDIX.midi2single_track_ms_score(open(f, 'rb').read(), recalculate_channels=False)
|
418 |
+
|
419 |
+
# INSTRUMENTS CONVERSION CYCLE
|
420 |
+
events_matrix = []
|
421 |
+
itrack = 1
|
422 |
+
patches = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
|
423 |
+
|
424 |
+
while itrack < len(score):
|
425 |
+
for event in score[itrack]:
|
426 |
+
if event[0] == 'note' or event[0] == 'patch_change':
|
427 |
+
events_matrix.append(event)
|
428 |
+
itrack += 1
|
429 |
+
|
430 |
+
events_matrix.sort(key=lambda x: x[1])
|
431 |
+
|
432 |
+
events_matrix1 = []
|
433 |
+
|
434 |
+
for event in events_matrix:
|
435 |
+
if event[0] == 'patch_change':
|
436 |
+
patches[event[2]] = event[3]
|
437 |
+
|
438 |
+
if event[0] == 'note':
|
439 |
+
event.extend([patches[event[3]]])
|
440 |
+
|
441 |
+
if events_matrix1:
|
442 |
+
if (event[1] == events_matrix1[-1][1]):
|
443 |
+
if ([event[3], event[4]] != events_matrix1[-1][3:5]):
|
444 |
+
events_matrix1.append(event)
|
445 |
+
else:
|
446 |
+
events_matrix1.append(event)
|
447 |
+
|
448 |
+
else:
|
449 |
+
events_matrix1.append(event)
|
450 |
+
|
451 |
+
if len(events_matrix1) > 0:
|
452 |
+
if min([e[1] for e in events_matrix1]) >= 0 and min([e[2] for e in events_matrix1]) >= 0:
|
453 |
+
|
454 |
+
#=======================================================
|
455 |
+
# PRE-PROCESSING
|
456 |
+
|
457 |
+
# checking number of instruments in a composition
|
458 |
+
instruments_list_without_drums = list(set([y[3] for y in events_matrix1 if y[3] != 9]))
|
459 |
+
instruments_list = list(set([y[3] for y in events_matrix1]))
|
460 |
+
|
461 |
+
if len(events_matrix1) > 0 and len(instruments_list_without_drums) > 0:
|
462 |
+
|
463 |
+
#======================================
|
464 |
+
|
465 |
+
events_matrix2 = []
|
466 |
+
|
467 |
+
# Recalculating timings
|
468 |
+
for e in events_matrix1:
|
469 |
+
|
470 |
+
# Original timings
|
471 |
+
e[1] = int(e[1] / 16)
|
472 |
+
e[2] = int(e[2] / 16)
|
473 |
+
|
474 |
+
#===================================
|
475 |
+
# ORIGINAL COMPOSITION
|
476 |
+
#===================================
|
477 |
+
|
478 |
+
# Sorting by patch, pitch, then by start-time
|
479 |
+
|
480 |
+
events_matrix1.sort(key=lambda x: x[6])
|
481 |
+
events_matrix1.sort(key=lambda x: x[4], reverse=True)
|
482 |
+
events_matrix1.sort(key=lambda x: x[1])
|
483 |
+
|
484 |
+
#=======================================================
|
485 |
+
# FINAL PROCESSING
|
486 |
+
|
487 |
+
melody_chords = []
|
488 |
+
melody_chords2 = []
|
489 |
+
|
490 |
+
# Break between compositions / Intro seq
|
491 |
+
|
492 |
+
if 9 in instruments_list:
|
493 |
+
drums_present = 18947 # Yes
|
494 |
+
else:
|
495 |
+
drums_present = 18946 # No
|
496 |
+
|
497 |
+
if events_matrix1[0][3] != 9:
|
498 |
+
pat = events_matrix1[0][6]
|
499 |
+
else:
|
500 |
+
pat = 128
|
501 |
+
|
502 |
+
melody_chords.extend([19077, drums_present, 18948+pat, 0]) # Intro seq
|
503 |
+
|
504 |
+
#=======================================================
|
505 |
+
# MAIN PROCESSING CYCLE
|
506 |
+
#=======================================================
|
507 |
+
|
508 |
+
abs_time = 0
|
509 |
+
|
510 |
+
pbar_time = 0
|
511 |
+
|
512 |
+
pe = events_matrix1[0]
|
513 |
+
|
514 |
+
chords_counter = 1
|
515 |
+
|
516 |
+
comp_chords_len = len(list(set([y[1] for y in events_matrix1])))
|
517 |
+
|
518 |
+
for e in events_matrix1:
|
519 |
+
|
520 |
+
#=======================================================
|
521 |
+
# Timings...
|
522 |
+
|
523 |
+
# Cliping all values...
|
524 |
+
delta_time = max(0, min(255, e[1]-pe[1]))
|
525 |
+
|
526 |
+
# Durations and channels
|
527 |
+
|
528 |
+
dur = max(0, min(255, e[2]))
|
529 |
+
cha = max(0, min(15, e[3]))
|
530 |
+
|
531 |
+
# Patches
|
532 |
+
if cha == 9: # Drums patch will be == 128
|
533 |
+
pat = 128
|
534 |
+
|
535 |
+
else:
|
536 |
+
pat = e[6]
|
537 |
+
|
538 |
+
# Pitches
|
539 |
+
|
540 |
+
ptc = max(1, min(127, e[4]))
|
541 |
+
|
542 |
+
# Velocities
|
543 |
+
|
544 |
+
# Calculating octo-velocity
|
545 |
+
vel = max(8, min(127, e[5]))
|
546 |
+
velocity = round(vel / 15)-1
|
547 |
+
|
548 |
+
#=======================================================
|
549 |
+
# Outro seq
|
550 |
+
|
551 |
+
# if ((comp_chords_len - chords_counter) == 50) and (delta_time != 0):
|
552 |
+
# out_t = 18946+delta_time
|
553 |
+
# out_p = 19202+ptc
|
554 |
+
# melody_chords.extend([18945, out_t, out_p]) # outro seq
|
555 |
+
|
556 |
+
|
557 |
+
# if delta_time != 0:
|
558 |
+
# chords_counter += 1
|
559 |
+
|
560 |
+
#=======================================================
|
561 |
+
# FINAL NOTE SEQ
|
562 |
+
|
563 |
+
# Writing final note asynchronously
|
564 |
+
|
565 |
+
dur_vel = (8 * dur) + velocity
|
566 |
+
pat_ptc = (129 * pat) + ptc
|
567 |
+
|
568 |
+
if delta_time != 0:
|
569 |
+
melody_chords.extend([delta_time, dur_vel+256, pat_ptc+2304])
|
570 |
+
else:
|
571 |
+
melody_chords.extend([dur_vel+256, pat_ptc+2304])
|
572 |
+
melody_chords2.append([delta_time, dur_vel+256, pat_ptc+2304])
|
573 |
+
|
574 |
+
pe = e
|
575 |
+
|
576 |
+
#=======================================================
|
577 |
+
|
578 |
+
# melody_chords.extend([19462, 19462, 19462]) # EOS
|
579 |
+
|
580 |
+
#=======================================================
|
581 |
+
|
582 |
+
# TOTAL DICTIONARY SIZE 19462+1=19463
|
583 |
+
#=======================================================
|
584 |
+
|
585 |
+
#=======================================================
|
586 |
+
|
587 |
+
song = melody_chords
|
588 |
+
|
589 |
+
song_f = []
|
590 |
+
|
591 |
+
time = 0
|
592 |
+
dur = 0
|
593 |
+
vel = 90
|
594 |
+
pitch = 0
|
595 |
+
channel = 0
|
596 |
+
|
597 |
+
patches = [-1] * 16
|
598 |
+
|
599 |
+
channels = [0] * 16
|
600 |
+
channels[9] = 1
|
601 |
+
|
602 |
+
for ss in song:
|
603 |
+
|
604 |
+
if 0 <= ss < 256:
|
605 |
+
|
606 |
+
time += ss * 16
|
607 |
+
|
608 |
+
if 256 <= ss < 2304:
|
609 |
+
|
610 |
+
dur = ((ss-256) // 8) * 16
|
611 |
+
vel = (((ss-256) % 8)+1) * 15
|
612 |
+
|
613 |
+
if 2304 <= ss < 18945:
|
614 |
+
|
615 |
+
patch = (ss-2304) // 129
|
616 |
+
|
617 |
+
if patch < 128:
|
618 |
+
|
619 |
+
if patch not in patches:
|
620 |
+
if 0 in channels:
|
621 |
+
cha = channels.index(0)
|
622 |
+
channels[cha] = 1
|
623 |
+
else:
|
624 |
+
cha = 15
|
625 |
+
|
626 |
+
patches[cha] = patch
|
627 |
+
channel = patches.index(patch)
|
628 |
+
else:
|
629 |
+
channel = patches.index(patch)
|
630 |
+
|
631 |
+
if patch == 128:
|
632 |
+
channel = 9
|
633 |
+
|
634 |
+
pitch = (ss-2304) % 129
|
635 |
+
|
636 |
+
song_f.append(['note', time, dur, channel, pitch, vel, patch ])
|
637 |
+
|
638 |
+
patches = [0 if x==-1 else x for x in patches]
|
639 |
+
|
640 |
+
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,
|
641 |
+
output_signature = 'Monster Music Transformer',
|
642 |
+
output_file_name = '/content/Monster-Music-Transformer-Seed-Composition',
|
643 |
+
track_name='Project Los Angeles',
|
644 |
+
list_of_MIDI_patches=patches
|
645 |
+
)
|
646 |
+
|
647 |
+
#=======================================================
|
648 |
+
|
649 |
+
print('=' * 70)
|
650 |
+
print('Composition stats:')
|
651 |
+
print('Composition has', len(melody_chords2), 'notes')
|
652 |
+
print('Composition has', len(melody_chords), 'tokens')
|
653 |
+
print('Composition MIDI patches:', sorted(list(set([((y-2304) // 129) for y in melody_chords if 2304 <= y < 18945]))))
|
654 |
+
print('=' * 70)
|
655 |
+
|
656 |
+
print('Displaying resulting composition...')
|
657 |
+
print('=' * 70)
|
658 |
+
|
659 |
+
fname = '/content/Monster-Music-Transformer-Seed-Composition'
|
660 |
+
|
661 |
+
if render_MIDI_to_audio:
|
662 |
+
midi_audio = midi_to_colab_audio(fname + '.mid')
|
663 |
+
display(Audio(midi_audio, rate=16000, normalize=False))
|
664 |
+
|
665 |
+
TMIDIX.plot_ms_SONG(song_f, plot_title=fname)
|
666 |
+
|
667 |
+
else:
|
668 |
+
print('=' * 70)
|
669 |
+
|
670 |
+
"""# (CONTINUATION)"""
|
671 |
+
|
672 |
+
#@title Standard Continuation
|
673 |
+
|
674 |
+
#@markdown Generation settings
|
675 |
+
|
676 |
+
try_to_generate_outro = False #@param {type:"boolean"}
|
677 |
+
number_of_prime_tokens = 7191 # @param {type:"slider", min:3, max:8190, step:3}
|
678 |
+
number_of_tokens_to_generate = 504 # @param {type:"slider", min:30, max:8190, step:3}
|
679 |
+
number_of_batches_to_generate = 4 #@param {type:"slider", min:1, max:16, step:1}
|
680 |
+
temperature = 0.9 # @param {type:"slider", min:0.1, max:1, step:0.05}
|
681 |
+
|
682 |
+
#@markdown Other settings
|
683 |
+
include_prime_tokens_in_generated_output = False #@param {type:"boolean"}
|
684 |
+
allow_model_to_stop_generation_if_needed = False #@param {type:"boolean"}
|
685 |
+
render_MIDI_to_audio = True # @param {type:"boolean"}
|
686 |
+
|
687 |
+
print('=' * 70)
|
688 |
+
print('Monster Music Transformer Standard Continuation Model Generator')
|
689 |
+
print('=' * 70)
|
690 |
+
|
691 |
+
if allow_model_to_stop_generation_if_needed:
|
692 |
+
min_stop_token = 19078
|
693 |
+
else:
|
694 |
+
min_stop_token = None
|
695 |
+
|
696 |
+
outy = melody_chords[:number_of_prime_tokens]
|
697 |
+
|
698 |
+
if try_to_generate_outro:
|
699 |
+
outy.extend([18945])
|
700 |
+
|
701 |
+
torch.cuda.empty_cache()
|
702 |
+
|
703 |
+
inp = [outy] * number_of_batches_to_generate
|
704 |
+
|
705 |
+
inp = torch.LongTensor(inp).cuda()
|
706 |
+
|
707 |
+
with ctx:
|
708 |
+
out = model.generate(inp,
|
709 |
+
number_of_tokens_to_generate,
|
710 |
+
temperature=temperature,
|
711 |
+
return_prime=include_prime_tokens_in_generated_output,
|
712 |
+
eos_token=min_stop_token,
|
713 |
+
verbose=True)
|
714 |
+
|
715 |
+
out0 = out.tolist()
|
716 |
+
|
717 |
+
torch.cuda.empty_cache()
|
718 |
+
|
719 |
+
print('=' * 70)
|
720 |
+
print('Done!')
|
721 |
+
print('=' * 70)
|
722 |
+
|
723 |
+
#======================================================================
|
724 |
+
print('Rendering results...')
|
725 |
+
|
726 |
+
for i in range(number_of_batches_to_generate):
|
727 |
+
|
728 |
+
print('=' * 70)
|
729 |
+
print('Batch #', i)
|
730 |
+
print('=' * 70)
|
731 |
+
|
732 |
+
out1 = out0[i]
|
733 |
+
|
734 |
+
print('Sample INTs', out1[:12])
|
735 |
+
print('=' * 70)
|
736 |
+
|
737 |
+
if len(out) != 0:
|
738 |
+
|
739 |
+
song = out1
|
740 |
+
song_f = []
|
741 |
+
|
742 |
+
time = 0
|
743 |
+
dur = 0
|
744 |
+
vel = 90
|
745 |
+
pitch = 0
|
746 |
+
channel = 0
|
747 |
+
|
748 |
+
patches = [-1] * 16
|
749 |
+
|
750 |
+
channels = [0] * 16
|
751 |
+
channels[9] = 1
|
752 |
+
|
753 |
+
for ss in song:
|
754 |
+
|
755 |
+
if 0 <= ss < 256:
|
756 |
+
|
757 |
+
time += ss * 16
|
758 |
+
|
759 |
+
if 256 <= ss < 2304:
|
760 |
+
|
761 |
+
dur = ((ss-256) // 8) * 16
|
762 |
+
vel = (((ss-256) % 8)+1) * 15
|
763 |
+
|
764 |
+
if 2304 <= ss < 18945:
|
765 |
+
|
766 |
+
patch = (ss-2304) // 129
|
767 |
+
|
768 |
+
if patch < 128:
|
769 |
+
|
770 |
+
if patch not in patches:
|
771 |
+
if 0 in channels:
|
772 |
+
cha = channels.index(0)
|
773 |
+
channels[cha] = 1
|
774 |
+
else:
|
775 |
+
cha = 15
|
776 |
+
|
777 |
+
patches[cha] = patch
|
778 |
+
channel = patches.index(patch)
|
779 |
+
else:
|
780 |
+
channel = patches.index(patch)
|
781 |
+
|
782 |
+
if patch == 128:
|
783 |
+
channel = 9
|
784 |
+
|
785 |
+
pitch = (ss-2304) % 129
|
786 |
+
|
787 |
+
song_f.append(['note', time, dur, channel, pitch, vel, patch ])
|
788 |
+
|
789 |
+
patches = [0 if x==-1 else x for x in patches]
|
790 |
+
|
791 |
+
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,
|
792 |
+
output_signature = 'Monster Music Transformer',
|
793 |
+
output_file_name = '/content/Monster-Music-Transformer-Music-Composition_'+str(i),
|
794 |
+
track_name='Project Los Angeles',
|
795 |
+
list_of_MIDI_patches=patches
|
796 |
+
)
|
797 |
+
print('=' * 70)
|
798 |
+
print('Displaying resulting composition...')
|
799 |
+
print('=' * 70)
|
800 |
+
|
801 |
+
fname = '/content/Monster-Music-Transformer-Music-Composition_'+str(i)
|
802 |
+
|
803 |
+
if render_MIDI_to_audio:
|
804 |
+
midi_audio = midi_to_colab_audio(fname + '.mid')
|
805 |
+
display(Audio(midi_audio, rate=16000, normalize=False))
|
806 |
+
|
807 |
+
TMIDIX.plot_ms_SONG(song_f, plot_title=fname)
|
808 |
+
|
809 |
+
"""# Congrats! You did it! :)"""
|