Datasets:

ArXiv:
License:
Nymeria / nymeria /body_motion_provider.py
ariakang's picture
updated accompanying tools
a199a9b
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from pathlib import Path
import numpy as np
import pymomentum as pym
import torch
from loguru import logger
from nymeria.xsens_constants import XSensConstants
from projectaria_tools.core.sophus import SE3
from pymomentum.geometry import Character, Mesh
class BodyDataProvider:
_dt_norminal: float = 1.0e6 / 240.0
_dt_tolerance: int = 1000 # 1ms
_tcorrect_tolerance: int = 10_1000 # 10ms
# coordinates tranform between momentum and xsens
_A_Wx_Wm = torch.tensor([0.01, 0, 0, 0, 0, -0.01, 0, 0.01, 0]).reshape([3, 3])
def __init__(self, npzfile: str, glbfile: str) -> None:
if not Path(npzfile).is_file():
logger.error(f"{npzfile=} not found")
return
logger.info(f"loading xsens from {npzfile=}")
self.xsens_data: dict[str, np.ndarray] = dict(np.load(npzfile))
for k, v in self.xsens_data.items():
logger.info(f"{k=}, {v.shape=}")
self.__correct_timestamps()
self.__correct_quaternion()
# load glb if exist
self.character: Character = None
self.motion: np.ndarray = None
if Path(glbfile).is_file():
self.character, self.motion, _, fps = Character.load_gltf_with_motion(
glbfile
)
assert fps == self.xsens_data[XSensConstants.k_framerate]
assert self.motion.shape[0] == self.xsens_data[XSensConstants.k_frame_count]
assert self.character.has_mesh
@property
def momentum_template_mesh(self) -> Mesh | None:
if self.character is not None:
return self.character.mesh
else:
return None
def __correct_timestamps(self) -> None:
t_original = self.xsens_data[XSensConstants.k_timestamps_us]
dt_original = t_original[1:] - t_original[:-1]
invalid = np.abs(dt_original - self._dt_norminal) > self._dt_tolerance
num_invalid = invalid.sum()
percentage = num_invalid / t_original.size * 100.0
if num_invalid == 0:
return
logger.warning(f"number of invalid timestamps {num_invalid}, {percentage=}%")
dt_corrected = dt_original
dt_corrected[invalid] = int(self._dt_norminal)
dt_corrected = np.insert(dt_corrected, 0, 0)
t_corrected = t_original[0] + np.cumsum(dt_corrected)
t_diff = np.abs(t_corrected - t_original)
logger.info(f"after correct {t_diff[-1]= }us")
if t_diff[-1] > self._tcorrect_tolerance:
raise RuntimeError(f"corrected timestamps exceed tolerance {t_diff[-1]=}")
self.xsens_data[XSensConstants.k_timestamps_us] = t_corrected
def __correct_quaternion(self) -> None:
qWXYZ = self.xsens_data[XSensConstants.k_part_qWXYZ].reshape(
-1, XSensConstants.num_parts, 4
)
qn = np.linalg.norm(qWXYZ, axis=-1, keepdims=False)
invalid = qn < 0.1
if invalid.sum() == 0:
return
else:
logger.error(f"number of invalid quaternions {invalid.sum()}")
for p in range(XSensConstants.num_parts):
if qn[0, p] < 0.5:
qWXYZ[0, p] = np.array([1, 0, 0, 0])
for f in range(1, qn.shape[0]):
for p in range(XSensConstants.num_parts):
if qn[f, p] < 0.5:
qWXYZ[f, p] = qWXYZ[f - 1, p]
self.xsens_data[XSensConstants.k_part_qWXYZ] = qWXYZ.reshape(
-1, XSensConstants.num_parts * 4
)
def get_global_timespan_us(self) -> tuple[int, int]:
t_us = self.xsens_data[XSensConstants.k_timestamps_us]
return t_us[0], t_us[-1]
def get_T_w_h(self, timespan_ns: tuple[int, int] = None) -> tuple[list, list]:
head_idx = XSensConstants.part_names.index("Head")
num_parts = XSensConstants.num_parts
timestamps_ns = self.xsens_data[XSensConstants.k_timestamps_us] * 1e3
if timespan_ns is not None:
t_start, t_end = timespan_ns
i_start = np.searchsorted(timestamps_ns, t_start) + 240
i_end = np.searchsorted(timestamps_ns, t_end) - 240
assert i_start < i_end
else:
i_start = 0
i_end = None
head_q = self.xsens_data[XSensConstants.k_part_qWXYZ].reshape(-1, num_parts, 4)[
i_start:i_end, head_idx, :
]
head_t = self.xsens_data[XSensConstants.k_part_tXYZ].reshape(-1, num_parts, 3)[
i_start:i_end, head_idx, :
]
T_w_h: list[SE3] = SE3.from_quat_and_translation(
head_q[:, 0], head_q[:, 1:], head_t
)
t_ns: list[int] = timestamps_ns[i_start:i_end].tolist()
logger.info(f"get {len(T_w_h)} samples for computing alignment")
return T_w_h, t_ns
def __get_closest_timestamp_idx(self, t_us: int) -> int:
if t_us <= self.get_global_timespan_us()[0]:
return 0
if t_us >= self.get_global_timespan_us()[-1]:
return -1
timestamps = self.xsens_data[XSensConstants.k_timestamps_us]
idx_rr = np.searchsorted(timestamps, t_us)
idx_ll = idx_rr - 1
if abs(timestamps[idx_ll] - t_us) < abs(timestamps[idx_rr] - t_us):
return idx_ll
else:
return idx_rr
def get_posed_skeleton_and_skin(
self, t_us: int, T_W_Hx: SE3 = None
) -> tuple[np.ndarray, np.ndarray | None]:
"""
\brief Given a query timestamp, return the closest body motion.
\arg t_us: query timestamp in microsecond.
\arg T_W_Hx: optional SE3 alignment from XSens head to world coordinates,
computed from XSens to Aria world coordinaes alignment.
\return First element is XSens posed skeleton. Second element is posed vertices
of momentum mesh if the momentum retargetted results are loaded.
We only return the posed mesh vertices, since the triangles and normals stay the same.
"""
# find closest timestamp
idx: int = self.__get_closest_timestamp_idx(t_us)
# get XSens posed skeleton
q = self.xsens_data[XSensConstants.k_part_qWXYZ][idx]
t = self.xsens_data[XSensConstants.k_part_tXYZ][idx]
T_Wx_Px = BodyDataProvider.qt_to_se3(q, t)
T_W_Wx: SE3 = None
if T_W_Hx is not None:
head_idx = XSensConstants.part_names.index("Head")
T_Hx_Wx = T_Wx_Px[head_idx].inverse()
T_W_Wx = T_W_Hx @ T_Hx_Wx
T_W_Px = [T_W_Wx @ T_wx_px for T_wx_px in T_Wx_Px]
skel_xsens = BodyDataProvider.se3_to_skeleton(T_W_Px)
else:
skel_xsens = BodyDataProvider.se3_to_skeleton(T_Wx_Px)
# get Momentum posed mesh vertices
if self.character is not None:
motion = torch.tensor(self.motion[idx])
skel_state: torch.Tensor = pym.geometry.model_parameters_to_skeleton_state(
self.character, motion
)
skin_momentum: torch.Tensor = self.character.skin_points(skel_state)
if T_W_Wx is not None:
t_W_Wx = (
torch.tensor(T_W_Wx.translation()).to(torch.float32).reshape([3, 1])
)
R_W_Wx = torch.tensor(T_W_Wx.rotation().to_matrix()).to(torch.float32)
R_W_Wm = R_W_Wx @ self._A_Wx_Wm
skin_momentum = (R_W_Wm @ skin_momentum.T + t_W_Wx).T
else:
skin_momentum = (self._A_Wx_Wm @ skin_momentum.T).T
return skel_xsens, skin_momentum
@staticmethod
def qt_to_se3(part_qWXYZ: np.ndarray, part_tXYZ: np.ndarray) -> list[SE3]:
"""
\brief Helper function to convert a frame of skeleton representation from
list of quaternion + translation to SE3.
"""
q_WXYZ = part_qWXYZ.reshape(XSensConstants.num_parts, 4)
t_XYZ = part_tXYZ.reshape(XSensConstants.num_parts, 3)
return SE3.from_quat_and_translation(q_WXYZ[:, 0], q_WXYZ[:, 1:], t_XYZ)
@staticmethod
def se3_to_skeleton(part_se3: list[SE3]) -> np.ndarray:
"""
\brief Helper function to convert a frame of skeleton parameters to 3D wireframe
for visualization purposes.
"""
assert len(part_se3) == XSensConstants.num_parts
children = np.concatenate([b.translation() for b in part_se3[1:]], axis=0)
parents = np.concatenate(
[part_se3[p].translation() for p in XSensConstants.kintree_parents[1:]],
axis=0,
)
skeleton_cp = np.stack([children, parents], axis=1)
assert skeleton_cp.shape == (XSensConstants.num_bones, 2, 3)
return skeleton_cp.astype(np.float32)
def create_body_data_provider(
xdata_npz: str, xdata_glb: str
) -> BodyDataProvider | None:
if Path(xdata_npz).is_file():
return BodyDataProvider(npzfile=xdata_npz, glbfile=xdata_glb)
else:
return None