|
|
|
|
|
|
|
|
|
|
|
|
|
from pathlib import Path |
|
|
|
import numpy as np |
|
import pymomentum as pym |
|
import torch |
|
from loguru import logger |
|
from nymeria.xsens_constants import XSensConstants |
|
from projectaria_tools.core.sophus import SE3 |
|
from pymomentum.geometry import Character, Mesh |
|
|
|
|
|
class BodyDataProvider: |
|
_dt_norminal: float = 1.0e6 / 240.0 |
|
_dt_tolerance: int = 1000 |
|
_tcorrect_tolerance: int = 10_1000 |
|
|
|
|
|
_A_Wx_Wm = torch.tensor([0.01, 0, 0, 0, 0, -0.01, 0, 0.01, 0]).reshape([3, 3]) |
|
|
|
def __init__(self, npzfile: str, glbfile: str) -> None: |
|
if not Path(npzfile).is_file(): |
|
logger.error(f"{npzfile=} not found") |
|
return |
|
|
|
logger.info(f"loading xsens from {npzfile=}") |
|
self.xsens_data: dict[str, np.ndarray] = dict(np.load(npzfile)) |
|
for k, v in self.xsens_data.items(): |
|
logger.info(f"{k=}, {v.shape=}") |
|
|
|
self.__correct_timestamps() |
|
self.__correct_quaternion() |
|
|
|
|
|
self.character: Character = None |
|
self.motion: np.ndarray = None |
|
if Path(glbfile).is_file(): |
|
self.character, self.motion, _, fps = Character.load_gltf_with_motion( |
|
glbfile |
|
) |
|
assert fps == self.xsens_data[XSensConstants.k_framerate] |
|
assert self.motion.shape[0] == self.xsens_data[XSensConstants.k_frame_count] |
|
assert self.character.has_mesh |
|
|
|
@property |
|
def momentum_template_mesh(self) -> Mesh | None: |
|
if self.character is not None: |
|
return self.character.mesh |
|
else: |
|
return None |
|
|
|
def __correct_timestamps(self) -> None: |
|
t_original = self.xsens_data[XSensConstants.k_timestamps_us] |
|
dt_original = t_original[1:] - t_original[:-1] |
|
invalid = np.abs(dt_original - self._dt_norminal) > self._dt_tolerance |
|
num_invalid = invalid.sum() |
|
percentage = num_invalid / t_original.size * 100.0 |
|
if num_invalid == 0: |
|
return |
|
logger.warning(f"number of invalid timestamps {num_invalid}, {percentage=}%") |
|
dt_corrected = dt_original |
|
dt_corrected[invalid] = int(self._dt_norminal) |
|
dt_corrected = np.insert(dt_corrected, 0, 0) |
|
t_corrected = t_original[0] + np.cumsum(dt_corrected) |
|
|
|
t_diff = np.abs(t_corrected - t_original) |
|
logger.info(f"after correct {t_diff[-1]= }us") |
|
if t_diff[-1] > self._tcorrect_tolerance: |
|
raise RuntimeError(f"corrected timestamps exceed tolerance {t_diff[-1]=}") |
|
|
|
self.xsens_data[XSensConstants.k_timestamps_us] = t_corrected |
|
|
|
def __correct_quaternion(self) -> None: |
|
qWXYZ = self.xsens_data[XSensConstants.k_part_qWXYZ].reshape( |
|
-1, XSensConstants.num_parts, 4 |
|
) |
|
qn = np.linalg.norm(qWXYZ, axis=-1, keepdims=False) |
|
invalid = qn < 0.1 |
|
if invalid.sum() == 0: |
|
return |
|
else: |
|
logger.error(f"number of invalid quaternions {invalid.sum()}") |
|
|
|
for p in range(XSensConstants.num_parts): |
|
if qn[0, p] < 0.5: |
|
qWXYZ[0, p] = np.array([1, 0, 0, 0]) |
|
for f in range(1, qn.shape[0]): |
|
for p in range(XSensConstants.num_parts): |
|
if qn[f, p] < 0.5: |
|
qWXYZ[f, p] = qWXYZ[f - 1, p] |
|
self.xsens_data[XSensConstants.k_part_qWXYZ] = qWXYZ.reshape( |
|
-1, XSensConstants.num_parts * 4 |
|
) |
|
|
|
def get_global_timespan_us(self) -> tuple[int, int]: |
|
t_us = self.xsens_data[XSensConstants.k_timestamps_us] |
|
return t_us[0], t_us[-1] |
|
|
|
def get_T_w_h(self, timespan_ns: tuple[int, int] = None) -> tuple[list, list]: |
|
head_idx = XSensConstants.part_names.index("Head") |
|
num_parts = XSensConstants.num_parts |
|
timestamps_ns = self.xsens_data[XSensConstants.k_timestamps_us] * 1e3 |
|
if timespan_ns is not None: |
|
t_start, t_end = timespan_ns |
|
i_start = np.searchsorted(timestamps_ns, t_start) + 240 |
|
i_end = np.searchsorted(timestamps_ns, t_end) - 240 |
|
assert i_start < i_end |
|
else: |
|
i_start = 0 |
|
i_end = None |
|
|
|
head_q = self.xsens_data[XSensConstants.k_part_qWXYZ].reshape(-1, num_parts, 4)[ |
|
i_start:i_end, head_idx, : |
|
] |
|
head_t = self.xsens_data[XSensConstants.k_part_tXYZ].reshape(-1, num_parts, 3)[ |
|
i_start:i_end, head_idx, : |
|
] |
|
T_w_h: list[SE3] = SE3.from_quat_and_translation( |
|
head_q[:, 0], head_q[:, 1:], head_t |
|
) |
|
t_ns: list[int] = timestamps_ns[i_start:i_end].tolist() |
|
logger.info(f"get {len(T_w_h)} samples for computing alignment") |
|
return T_w_h, t_ns |
|
|
|
def __get_closest_timestamp_idx(self, t_us: int) -> int: |
|
if t_us <= self.get_global_timespan_us()[0]: |
|
return 0 |
|
if t_us >= self.get_global_timespan_us()[-1]: |
|
return -1 |
|
|
|
timestamps = self.xsens_data[XSensConstants.k_timestamps_us] |
|
idx_rr = np.searchsorted(timestamps, t_us) |
|
idx_ll = idx_rr - 1 |
|
if abs(timestamps[idx_ll] - t_us) < abs(timestamps[idx_rr] - t_us): |
|
return idx_ll |
|
else: |
|
return idx_rr |
|
|
|
def get_posed_skeleton_and_skin( |
|
self, t_us: int, T_W_Hx: SE3 = None |
|
) -> tuple[np.ndarray, np.ndarray | None]: |
|
""" |
|
\brief Given a query timestamp, return the closest body motion. |
|
\arg t_us: query timestamp in microsecond. |
|
\arg T_W_Hx: optional SE3 alignment from XSens head to world coordinates, |
|
computed from XSens to Aria world coordinaes alignment. |
|
\return First element is XSens posed skeleton. Second element is posed vertices |
|
of momentum mesh if the momentum retargetted results are loaded. |
|
We only return the posed mesh vertices, since the triangles and normals stay the same. |
|
""" |
|
|
|
idx: int = self.__get_closest_timestamp_idx(t_us) |
|
|
|
|
|
q = self.xsens_data[XSensConstants.k_part_qWXYZ][idx] |
|
t = self.xsens_data[XSensConstants.k_part_tXYZ][idx] |
|
T_Wx_Px = BodyDataProvider.qt_to_se3(q, t) |
|
T_W_Wx: SE3 = None |
|
if T_W_Hx is not None: |
|
head_idx = XSensConstants.part_names.index("Head") |
|
T_Hx_Wx = T_Wx_Px[head_idx].inverse() |
|
T_W_Wx = T_W_Hx @ T_Hx_Wx |
|
T_W_Px = [T_W_Wx @ T_wx_px for T_wx_px in T_Wx_Px] |
|
skel_xsens = BodyDataProvider.se3_to_skeleton(T_W_Px) |
|
else: |
|
skel_xsens = BodyDataProvider.se3_to_skeleton(T_Wx_Px) |
|
|
|
|
|
if self.character is not None: |
|
motion = torch.tensor(self.motion[idx]) |
|
skel_state: torch.Tensor = pym.geometry.model_parameters_to_skeleton_state( |
|
self.character, motion |
|
) |
|
skin_momentum: torch.Tensor = self.character.skin_points(skel_state) |
|
|
|
if T_W_Wx is not None: |
|
t_W_Wx = ( |
|
torch.tensor(T_W_Wx.translation()).to(torch.float32).reshape([3, 1]) |
|
) |
|
R_W_Wx = torch.tensor(T_W_Wx.rotation().to_matrix()).to(torch.float32) |
|
|
|
R_W_Wm = R_W_Wx @ self._A_Wx_Wm |
|
skin_momentum = (R_W_Wm @ skin_momentum.T + t_W_Wx).T |
|
else: |
|
skin_momentum = (self._A_Wx_Wm @ skin_momentum.T).T |
|
|
|
return skel_xsens, skin_momentum |
|
|
|
@staticmethod |
|
def qt_to_se3(part_qWXYZ: np.ndarray, part_tXYZ: np.ndarray) -> list[SE3]: |
|
""" |
|
\brief Helper function to convert a frame of skeleton representation from |
|
list of quaternion + translation to SE3. |
|
""" |
|
q_WXYZ = part_qWXYZ.reshape(XSensConstants.num_parts, 4) |
|
t_XYZ = part_tXYZ.reshape(XSensConstants.num_parts, 3) |
|
return SE3.from_quat_and_translation(q_WXYZ[:, 0], q_WXYZ[:, 1:], t_XYZ) |
|
|
|
@staticmethod |
|
def se3_to_skeleton(part_se3: list[SE3]) -> np.ndarray: |
|
""" |
|
\brief Helper function to convert a frame of skeleton parameters to 3D wireframe |
|
for visualization purposes. |
|
""" |
|
assert len(part_se3) == XSensConstants.num_parts |
|
children = np.concatenate([b.translation() for b in part_se3[1:]], axis=0) |
|
parents = np.concatenate( |
|
[part_se3[p].translation() for p in XSensConstants.kintree_parents[1:]], |
|
axis=0, |
|
) |
|
skeleton_cp = np.stack([children, parents], axis=1) |
|
assert skeleton_cp.shape == (XSensConstants.num_bones, 2, 3) |
|
return skeleton_cp.astype(np.float32) |
|
|
|
|
|
def create_body_data_provider( |
|
xdata_npz: str, xdata_glb: str |
|
) -> BodyDataProvider | None: |
|
if Path(xdata_npz).is_file(): |
|
return BodyDataProvider(npzfile=xdata_npz, glbfile=xdata_glb) |
|
else: |
|
return None |
|
|