proan commited on
Commit
41c2a42
·
1 Parent(s): e4eb5be

Upload fashion.py

Browse files
Files changed (1) hide show
  1. fashion.py +106 -0
fashion.py ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ # Lint as: python3
17
+ """SQUAD: The Stanford Question Answering Dataset."""
18
+
19
+
20
+ import json
21
+
22
+ import datasets
23
+ from datasets.tasks import QuestionAnsweringExtractive
24
+
25
+
26
+ logger = datasets.logging.get_logger(__name__)
27
+
28
+
29
+ _CITATION = """\
30
+ @article{2016arXiv160605250R,
31
+ author = {{Rajpurkar}, Pranav and {Zhang}, Jian and {Lopyrev},
32
+ Konstantin and {Liang}, Percy},
33
+ title = "{SQuAD: 100,000+ Questions for Machine Comprehension of Text}",
34
+ journal = {arXiv e-prints},
35
+ year = 2016,
36
+ eid = {arXiv:1606.05250},
37
+ pages = {arXiv:1606.05250},
38
+ archivePrefix = {arXiv},
39
+ eprint = {1606.05250},
40
+ }
41
+ """
42
+
43
+ _DESCRIPTION = """\
44
+ Stanford Question Answering Dataset (SQuAD) is a reading comprehension \
45
+ dataset, consisting of questions posed by crowdworkers on a set of Wikipedia \
46
+ articles, where the answer to every question is a segment of text, or span, \
47
+ from the corresponding reading passage, or the question might be unanswerable.
48
+ """
49
+
50
+ _URL = "https://huggingface.co/datasets/proan/fashion/resolve/main/images.tar.gz"
51
+
52
+
53
+
54
+
55
+ class Fashion(datasets.GeneratorBasedBuilder):
56
+ """SQUAD: The Stanford Question Answering Dataset. Version 1.1."""
57
+
58
+
59
+
60
+ def _info(self):
61
+ return datasets.DatasetInfo(
62
+ description=_DESCRIPTION,
63
+ features=datasets.Features(
64
+ {
65
+ "id": datasets.Value("int64"),
66
+ "color": datasets.Value("string"),
67
+ "description": datasets.Value("string"),
68
+ "shop_id": datasets.Value("string"),
69
+ "year": datasets.Value("float64"),
70
+ "image": datasets.Image(),
71
+ }
72
+ ),
73
+ # No default supervised_keys (as we have to pass both question
74
+ # and context as input).
75
+ supervised_keys=None,
76
+ homepage="https://huggingface.co/datasets/proan/fashion",
77
+ citation=_CITATION,
78
+
79
+ )
80
+
81
+ def _split_generators(self, dl_manager):
82
+ path = dl_manager.download_and_extract(_URL)
83
+ image_iters = dl_manager.iter_archive(path)
84
+
85
+ return [
86
+ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"images": image_iters}),
87
+
88
+ ]
89
+
90
+ def _generate_examples(self, images):
91
+
92
+ idx = 0
93
+ #iterate through images
94
+ for filepath, image in images:
95
+ yield idx, {
96
+ "image": {"path": filepath, "image": image.read()},
97
+ "id": datasets.Value("int64"),
98
+ "color": datasets.Value("string"),
99
+ "description": datasets.Value("string"),
100
+ "shop_id": datasets.Value("string"),
101
+ "year": datasets.Value("float64"),
102
+ "image": datasets.Image(),
103
+ }
104
+ idx +=1
105
+
106
+