|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""SQUAD: The Stanford Question Answering Dataset.""" |
|
|
|
|
|
import json |
|
|
|
import datasets |
|
from datasets.tasks import QuestionAnsweringExtractive |
|
|
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
_CITATION = """\ |
|
@article{2016arXiv160605250R, |
|
author = {{Rajpurkar}, Pranav and {Zhang}, Jian and {Lopyrev}, |
|
Konstantin and {Liang}, Percy}, |
|
title = "{SQuAD: 100,000+ Questions for Machine Comprehension of Text}", |
|
journal = {arXiv e-prints}, |
|
year = 2016, |
|
eid = {arXiv:1606.05250}, |
|
pages = {arXiv:1606.05250}, |
|
archivePrefix = {arXiv}, |
|
eprint = {1606.05250}, |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
Stanford Question Answering Dataset (SQuAD) is a reading comprehension \ |
|
dataset, consisting of questions posed by crowdworkers on a set of Wikipedia \ |
|
articles, where the answer to every question is a segment of text, or span, \ |
|
from the corresponding reading passage, or the question might be unanswerable. |
|
""" |
|
|
|
_URL = "https://huggingface.co/datasets/proan/fashion/resolve/main/images.tar.gz" |
|
|
|
|
|
|
|
|
|
class Fashion(datasets.GeneratorBasedBuilder): |
|
"""SQUAD: The Stanford Question Answering Dataset. Version 1.1.""" |
|
|
|
|
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("int64"), |
|
"color": datasets.Value("string"), |
|
"description": datasets.Value("string"), |
|
"shop_id": datasets.Value("string"), |
|
"year": datasets.Value("float64"), |
|
"image": datasets.Image(), |
|
} |
|
), |
|
|
|
|
|
supervised_keys=None, |
|
homepage="https://huggingface.co/datasets/proan/fashion", |
|
citation=_CITATION, |
|
|
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
path = dl_manager.download_and_extract(_URL) |
|
image_iters = dl_manager.iter_archive(path) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"images": image_iters}), |
|
|
|
] |
|
|
|
def _generate_examples(self, images): |
|
|
|
idx = 0 |
|
|
|
for filepath, image in images: |
|
yield idx, { |
|
"image": {"path": filepath, "bytes": image.read()}, |
|
"id": datasets.Value("int64"), |
|
"color": datasets.Value("string"), |
|
"description": datasets.Value("string"), |
|
"shop_id": datasets.Value("string"), |
|
"year": datasets.Value("float64"), |
|
"image": datasets.Image(), |
|
} |
|
idx +=1 |
|
|
|
|