prithivMLmods commited on
Commit
a0dd7d3
·
verified ·
1 Parent(s): 9b37f1a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +57 -3
README.md CHANGED
@@ -1,3 +1,57 @@
1
- ---
2
- license: creativeml-openrail-m
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: creativeml-openrail-m
3
+ language:
4
+ - en
5
+ pretty_name: f
6
+ ---
7
+ # **RT Finetuning Scripts**
8
+
9
+ This repository contains the training and fine-tuning scripts for the following models and adapters:
10
+
11
+ - **Llama**
12
+ - **Qwen**
13
+ - **SmolLM**
14
+ - **DeepSeek**
15
+ - **Other Adapters**
16
+
17
+ ## Overview
18
+
19
+ These scripts are designed to help you fine-tune various language models and adapters, making it easy to train or adapt models to new datasets and tasks. Whether you want to improve a model’s performance or specialize it for a specific domain, these scripts will facilitate the process.
20
+
21
+ ## Features
22
+
23
+ - **Training Scripts**: Easily train models on your own dataset.
24
+ - **Fine-Tuning Scripts**: Fine-tune pre-trained models with minimal setup.
25
+ - **Support for Multiple Models**: The scripts support a variety of models including Llama, Qwen, SmolLM, and DeepSeek.
26
+ - **Adapter Support**: Fine-tune adapters for flexible deployment and specialization.
27
+
28
+ ## Requirements
29
+
30
+ Before running the scripts, make sure you have the following dependencies:
31
+
32
+ - Python 3.x
33
+ - `transformers` library
34
+ - `torch` (CUDA for GPU acceleration)
35
+ - Additional dependencies (see `requirements.txt`)
36
+
37
+ ## Installation
38
+
39
+ Clone the repository and install dependencies:
40
+
41
+ ```bash
42
+ git clone https://github.com/your-repo/rt-finetuning-scripts.git
43
+ cd rt-finetuning-scripts
44
+ pip install -r requirements.txt
45
+ ```
46
+
47
+ ## Usage
48
+
49
+ ### Fine-Tuning a Model
50
+
51
+ 1. **Choose a model**: Select from Llama, Qwen, SmolLM, or DeepSeek.
52
+ 2. **Prepare your dataset**: Ensure your dataset is formatted correctly for fine-tuning.
53
+ 3. **Run the fine-tuning script**: Execute the script for your chosen model.
54
+
55
+ ## Contributing
56
+
57
+ Contributions are welcome! If you have improvements or bug fixes, feel free to submit a pull request.