File size: 1,377 Bytes
6b79f1e
 
 
 
 
 
202d3c1
6b79f1e
202d3c1
6b79f1e
 
1f4f078
6b79f1e
202d3c1
1f4f078
6b79f1e
202d3c1
1f4f078
6b79f1e
 
 
 
 
202d3c1
 
1f4f078
 
 
6b79f1e
1f4f078
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
---
dataset_info:
  features:
  - name: id
    dtype: int32
  - name: seismic
    dtype: image
  - name: label
    dtype: image
  splits:
  - name: train
    num_bytes: 120649829
    num_examples: 115
  - name: valid
    num_bytes: 29375385
    num_examples: 28
  download_size: 149989771
  dataset_size: 150025214
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: valid
    path: data/valid-*
license: cc-by-4.0
task_categories:
- image-segmentation
---
This dataset is part of the work by Guo Zhixiang et al.https://github.com/ProgrammerZXG/Cross-Domain-Foundation-Model-Adaptation?tab=readme-ov-file

The dataset is originally available on Zenodo https://zenodo.org/records/12798750
And licensed under Creative Commons Attribution 4.0 International

Please cite the following article if you use this dataset:
@misc{guo2024crossdomainfoundationmodeladaptation,
      title={Cross-Domain Foundation Model Adaptation: Pioneering Computer Vision Models for Geophysical Data Analysis}, 
      author={Zhixiang Guo and Xinming Wu and Luming Liang and Hanlin Sheng and Nuo Chen and Zhengfa Bi},
      year={2024},
      eprint={2408.12396},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2408.12396}, 
}


Additional information can be found at https://github.com/porestart/seismic-datasets