Datasets:
File size: 1,377 Bytes
6b79f1e 202d3c1 6b79f1e 202d3c1 6b79f1e 1f4f078 6b79f1e 202d3c1 1f4f078 6b79f1e 202d3c1 1f4f078 6b79f1e 202d3c1 1f4f078 6b79f1e 1f4f078 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
---
dataset_info:
features:
- name: id
dtype: int32
- name: seismic
dtype: image
- name: label
dtype: image
splits:
- name: train
num_bytes: 120649829
num_examples: 115
- name: valid
num_bytes: 29375385
num_examples: 28
download_size: 149989771
dataset_size: 150025214
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: valid
path: data/valid-*
license: cc-by-4.0
task_categories:
- image-segmentation
---
This dataset is part of the work by Guo Zhixiang et al.https://github.com/ProgrammerZXG/Cross-Domain-Foundation-Model-Adaptation?tab=readme-ov-file
The dataset is originally available on Zenodo https://zenodo.org/records/12798750
And licensed under Creative Commons Attribution 4.0 International
Please cite the following article if you use this dataset:
@misc{guo2024crossdomainfoundationmodeladaptation,
title={Cross-Domain Foundation Model Adaptation: Pioneering Computer Vision Models for Geophysical Data Analysis},
author={Zhixiang Guo and Xinming Wu and Luming Liang and Hanlin Sheng and Nuo Chen and Zhengfa Bi},
year={2024},
eprint={2408.12396},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2408.12396},
}
Additional information can be found at https://github.com/porestart/seismic-datasets
|