xiaohk commited on
Commit
154c30d
·
1 Parent(s): 712834a

Document data loading method

Browse files
Files changed (1) hide show
  1. README.md +76 -0
README.md CHANGED
@@ -134,10 +134,86 @@ For example, below is the image of `f3501e05-aef7-4225-a9e9-f516527408ac.png` an
134
  - `st`: Steps
135
  - `sa`: Sampler
136
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
137
  ### Data Splits
138
 
139
  We split 2 million images into 2,000 folders where each folder contains 1,000 images and a JSON file.
140
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
141
  ## Dataset Creation
142
 
143
  ### Curation Rationale
 
134
  - `st`: Steps
135
  - `sa`: Sampler
136
 
137
+ At the top level folder of DiffusionDB, we include a metadata table in Parquet format `metadata.parquet`.
138
+ This table has seven columns: `image_name`, `prompt`, `part_id`, `seed`, `step`, `cfg`, and `sampler`, and it has 2 million rows where each row represents an image. `seed`, `step`, and `cfg` are We choose Parquet because it is column-based: researchers can efficiently query individual columns (e.g., prompts) without reading the entire table. Below are the five random rows from the table.
139
+
140
+ | image_name | prompt | part_id | seed | step | cfg | sampler |
141
+ |------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------|------|-----|---------|
142
+ | 49f1e478-ade6-49a8-a672-6e06c78d45fc.png | ryan gosling in fallout 4 kneels near a nuclear bomb | 1643 | 2220670173 | 50 | 7.0 | 8 |
143
+ | b7d928b6-d065-4e81-bc0c-9d244fd65d0b.png | A beautiful robotic woman dreaming, cinematic lighting, soft bokeh, sci-fi, modern, colourful, highly detailed, digital painting, artstation, concept art, sharp focus, illustration, by greg rutkowski | 87 | 51324658 | 130 | 6.0 | 8 |
144
+ | 19b1b2f1-440e-4588-ba96-1ac19888c4ba.png | bestiary of creatures from the depths of the unconscious psyche, in the style of a macro photograph with shallow dof | 754 | 3953796708 | 50 | 7.0 | 8 |
145
+ | d34afa9d-cf06-470f-9fce-2efa0e564a13.png | close up portrait of one calico cat by vermeer. black background, three - point lighting, enchanting, realistic features, realistic proportions. | 1685 | 2007372353 | 50 | 7.0 | 8 |
146
+ | c3a21f1f-8651-4a58-a4d4-7500d97651dc.png | a bottle of jack daniels with the word medicare replacing the word jack daniels | 243 | 1617291079 | 50 | 7.0 | 8 |
147
+
148
+ To save space, we use an integer to encode the `sampler` in the table above.
149
+
150
+ |Sampler|Integer Value|
151
+ |:--|--:|
152
+ |ddim|1|
153
+ |plms|2|
154
+ |k_euler|3|
155
+ |k_euler_ancestral|4|
156
+ |ddik_heunm|5|
157
+ |k_dpm_2|6|
158
+ |k_dpm_2_ancestral|7|
159
+ |k_lms|8|
160
+ |others|9|
161
+
162
  ### Data Splits
163
 
164
  We split 2 million images into 2,000 folders where each folder contains 1,000 images and a JSON file.
165
 
166
+ ### Loading Data Subsets
167
+
168
+ DiffusionDB is large (1.6TB)! However, with our modularized file structure, you can easily load a desirable number of images and their prompts and hyperparameters. In the [`example-loading.ipynb`](https://github.com/poloclub/diffusiondb/blob/main/notebooks/example-loading.ipynb) notebook, we demonstrate three methods to load a subset of DiffusionDB. Below is a short summary.
169
+
170
+ #### Method 1: Using Hugging Face Datasets Loader
171
+
172
+ You can use the Hugging Face [`Datasets`](https://huggingface.co/docs/datasets/quickstart) library to easily load prompts and images from DiffusionDB. We pre-defined 16 DiffusionDB subsets (configurations) based on the number of instances. You can see all subsets in the [Dataset Preview](https://huggingface.co/datasets/poloclub/diffusiondb/viewer/all/train).
173
+
174
+ ```python
175
+ import numpy as np
176
+ from datasets import load_dataset
177
+
178
+ # Load the dataset with the `random_1k` subset
179
+ dataset = load_dataset('poloclub/diffusiondb', 'random_1k')
180
+ ```
181
+
182
+ #### Method 2. Manually Download the Data
183
+
184
+ All zip files in DiffusionDB have the following URLs, where `{xxxxxx}` ranges from `000001` to `002000`. Therefore, you can write a script to download any number of zip files and use them for your task.
185
+
186
+ `https://huggingface.co/datasets/poloclub/diffusiondb/resolve/main/images/part-{xxxxxx}.zip`
187
+
188
+ ```python
189
+ from urllib.request import urlretrieve
190
+ import shutil
191
+
192
+ # Download part-000001.zip
193
+ part_id = 1
194
+ part_url = f'https://huggingface.co/datasets/poloclub/diffusiondb/resolve/main/images/part-{part_id:06}.zip'
195
+ urlretrieve(part_url, f'part-{part_id:06}.zip')
196
+
197
+ # Unzip part-000001.zip
198
+ shutil.unpack_archive(f'part-{part_id:06}.zip', f'part-{part_id:06}')
199
+ ```
200
+
201
+ #### Method 3. Use `metadata.parquet` (Text Only)
202
+
203
+ If your task does not require images, then you can easily access all 2 million prompts and hyperparameters in the `metadata.parquet` table.
204
+
205
+ ```python
206
+ from urllib.request import urlretrieve
207
+ import pandas as pd
208
+
209
+ # Download the parquet table
210
+ table_url = f'https://huggingface.co/datasets/poloclub/diffusiondb/resolve/main/metadata.parquet'
211
+ urlretrieve(table_url, 'metadata.parquet')
212
+
213
+ # Read the table using Pandas
214
+ metadata_df = pd.read_parquet('metadata.parquet')
215
+ ```
216
+
217
  ## Dataset Creation
218
 
219
  ### Curation Rationale