pittawat commited on
Commit
19a2603
·
1 Parent(s): e0c0aca

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +41 -4
README.md CHANGED
@@ -20,7 +20,7 @@ dataset_info:
20
  '10': K
21
  '11': L
22
  '12': M
23
- '13': N
24
  '14': O
25
  '15': P
26
  '16': Q
@@ -31,18 +31,55 @@ dataset_info:
31
  '21': V
32
  '22': W
33
  '23': X
34
- '24': Y
35
  '25': Z
36
  splits:
37
  - name: train
38
- num_bytes: 22453522.0
39
  num_examples: 26000
40
  - name: test
41
  num_bytes: 2244964.8
42
  num_examples: 2600
43
  download_size: 8149945
44
  dataset_size: 24698486.8
 
 
 
 
 
 
45
  ---
46
  # Dataset Card for "letter_recognition"
47
 
48
- [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
  '10': K
21
  '11': L
22
  '12': M
23
+ '13': 'N'
24
  '14': O
25
  '15': P
26
  '16': Q
 
31
  '21': V
32
  '22': W
33
  '23': X
34
+ '24': 'Y'
35
  '25': Z
36
  splits:
37
  - name: train
38
+ num_bytes: 22453522
39
  num_examples: 26000
40
  - name: test
41
  num_bytes: 2244964.8
42
  num_examples: 2600
43
  download_size: 8149945
44
  dataset_size: 24698486.8
45
+ task_categories:
46
+ - image-classification
47
+ language:
48
+ - en
49
+ size_categories:
50
+ - 1K<n<10K
51
  ---
52
  # Dataset Card for "letter_recognition"
53
 
54
+ Images in this dataset was generated using the script defined below. The original dataset in CSV format and more information of the original dataset is available at [A-Z Handwritten Alphabets in .csv format](https://www.kaggle.com/datasets/sachinpatel21/az-handwritten-alphabets-in-csv-format).
55
+
56
+
57
+ ```python
58
+ import os
59
+ import pandas as pd
60
+ import matplotlib.pyplot as plt
61
+
62
+ CHARACTER_COUNT = 26
63
+
64
+ data = pd.read_csv('./A_Z Handwritten Data.csv')
65
+ mapping = {str(i): chr(i+65) for i in range(26)}
66
+
67
+ def generate_dataset(folder, end, start=0):
68
+ if not os.path.exists(folder):
69
+ os.makedirs(folder)
70
+ print(f"The folder '{folder}' has been created successfully!")
71
+ else:
72
+ print(f"The folder '{folder}' already exists.")
73
+
74
+ for i in range(CHARACTER_COUNT):
75
+ dd = data[data['0']==i]
76
+ for j in range(start, end):
77
+ ddd = dd.iloc[j]
78
+ x = ddd[1:].values
79
+ x = x.reshape((28, 28))
80
+ plt.axis('off')
81
+ plt.imsave(f'{folder}/{mapping[str(i)]}_{j}.jpg', x, cmap='binary')
82
+
83
+ generate_dataset('./train', 1000)
84
+ generate_dataset('./test', 1100, 1000)
85
+ ```