Datasets:

Modalities:
Text
Languages:
Estonian
ArXiv:
Libraries:
Datasets
License:
File size: 14,020 Bytes
3ef79b8
43aa529
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d260a42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ef79b8
43aa529
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e98aead
43aa529
 
6eebe10
 
43aa529
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
---
annotations_creators:
- expert-generated
language:
- et
language_creators:
- found
license:
- cc-by-nc-4.0
multilinguality:
- monolingual
paperswithcode_id: noisyner
pretty_name: NoisyNER
size_categories:
- 10K<n<100K
source_datasets:
- original
tags:
- newspapers
- 1997-2009
task_categories:
- token-classification
task_ids:
- named-entity-recognition
dataset_info:
- config_name: estner_clean
  features:
  - name: id
    dtype: string
  - name: tokens
    sequence: string
  - name: lemmas
    sequence: string
  - name: grammar
    sequence: string
  - name: ner_tags
    sequence:
      class_label:
        names:
          '0': O
          '1': B-PER
          '2': I-PER
          '3': B-ORG
          '4': I-ORG
          '5': B-LOC
          '6': I-LOC
  splits:
  - name: train
    num_bytes: 7544221
    num_examples: 11365
  - name: validation
    num_bytes: 986310
    num_examples: 1480
  - name: test
    num_bytes: 995204
    num_examples: 1433
  download_size: 6258130
  dataset_size: 9525735
- config_name: NoisyNER_labelset1
  features:
  - name: id
    dtype: string
  - name: tokens
    sequence: string
  - name: lemmas
    sequence: string
  - name: grammar
    sequence: string
  - name: ner_tags
    sequence:
      class_label:
        names:
          '0': O
          '1': B-PER
          '2': I-PER
          '3': B-ORG
          '4': I-ORG
          '5': B-LOC
          '6': I-LOC
  splits:
  - name: train
    num_bytes: 7544221
    num_examples: 11365
  - name: validation
    num_bytes: 986310
    num_examples: 1480
  - name: test
    num_bytes: 995204
    num_examples: 1433
  download_size: 6194276
  dataset_size: 9525735
- config_name: NoisyNER_labelset2
  features:
  - name: id
    dtype: string
  - name: tokens
    sequence: string
  - name: lemmas
    sequence: string
  - name: grammar
    sequence: string
  - name: ner_tags
    sequence:
      class_label:
        names:
          '0': O
          '1': B-PER
          '2': I-PER
          '3': B-ORG
          '4': I-ORG
          '5': B-LOC
          '6': I-LOC
  splits:
  - name: train
    num_bytes: 7544221
    num_examples: 11365
  - name: validation
    num_bytes: 986310
    num_examples: 1480
  - name: test
    num_bytes: 995204
    num_examples: 1433
  download_size: 6201072
  dataset_size: 9525735
- config_name: NoisyNER_labelset3
  features:
  - name: id
    dtype: string
  - name: tokens
    sequence: string
  - name: lemmas
    sequence: string
  - name: grammar
    sequence: string
  - name: ner_tags
    sequence:
      class_label:
        names:
          '0': O
          '1': B-PER
          '2': I-PER
          '3': B-ORG
          '4': I-ORG
          '5': B-LOC
          '6': I-LOC
  splits:
  - name: train
    num_bytes: 7544221
    num_examples: 11365
  - name: validation
    num_bytes: 986310
    num_examples: 1480
  - name: test
    num_bytes: 995204
    num_examples: 1433
  download_size: 6231384
  dataset_size: 9525735
- config_name: NoisyNER_labelset4
  features:
  - name: id
    dtype: string
  - name: tokens
    sequence: string
  - name: lemmas
    sequence: string
  - name: grammar
    sequence: string
  - name: ner_tags
    sequence:
      class_label:
        names:
          '0': O
          '1': B-PER
          '2': I-PER
          '3': B-ORG
          '4': I-ORG
          '5': B-LOC
          '6': I-LOC
  splits:
  - name: train
    num_bytes: 7544221
    num_examples: 11365
  - name: validation
    num_bytes: 986310
    num_examples: 1480
  - name: test
    num_bytes: 995204
    num_examples: 1433
  download_size: 6201072
  dataset_size: 9525735
- config_name: NoisyNER_labelset5
  features:
  - name: id
    dtype: string
  - name: tokens
    sequence: string
  - name: lemmas
    sequence: string
  - name: grammar
    sequence: string
  - name: ner_tags
    sequence:
      class_label:
        names:
          '0': O
          '1': B-PER
          '2': I-PER
          '3': B-ORG
          '4': I-ORG
          '5': B-LOC
          '6': I-LOC
  splits:
  - name: train
    num_bytes: 7544221
    num_examples: 11365
  - name: validation
    num_bytes: 986310
    num_examples: 1480
  - name: test
    num_bytes: 995204
    num_examples: 1433
  download_size: 6231384
  dataset_size: 9525735
- config_name: NoisyNER_labelset6
  features:
  - name: id
    dtype: string
  - name: tokens
    sequence: string
  - name: lemmas
    sequence: string
  - name: grammar
    sequence: string
  - name: ner_tags
    sequence:
      class_label:
        names:
          '0': O
          '1': B-PER
          '2': I-PER
          '3': B-ORG
          '4': I-ORG
          '5': B-LOC
          '6': I-LOC
  splits:
  - name: train
    num_bytes: 7544221
    num_examples: 11365
  - name: validation
    num_bytes: 986310
    num_examples: 1480
  - name: test
    num_bytes: 995204
    num_examples: 1433
  download_size: 6226516
  dataset_size: 9525735
- config_name: NoisyNER_labelset7
  features:
  - name: id
    dtype: string
  - name: tokens
    sequence: string
  - name: lemmas
    sequence: string
  - name: grammar
    sequence: string
  - name: ner_tags
    sequence:
      class_label:
        names:
          '0': O
          '1': B-PER
          '2': I-PER
          '3': B-ORG
          '4': I-ORG
          '5': B-LOC
          '6': I-LOC
  splits:
  - name: train
    num_bytes: 7544221
    num_examples: 11365
  - name: validation
    num_bytes: 986310
    num_examples: 1480
  - name: test
    num_bytes: 995204
    num_examples: 1433
  download_size: 6229668
  dataset_size: 9525735
---

# Dataset Card for NoisyNER

## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Repository:** [Estonian NER corpus](https://doi.org/10.15155/1-00-0000-0000-0000-00073L), [NoisyNER dataset](https://github.com/uds-lsv/NoisyNER)
- **Paper:** [Named Entity Recognition in Estonian](https://aclanthology.org/W13-2412/), [Analysing the Noise Model Error for Realistic Noisy Label Data](https://arxiv.org/abs/2101.09763)
- **Dataset:** NoisyNER
- **Domain:** News
- **Size of downloaded dataset files:** 6.23 MB 
- **Size of the generated dataset files:** 9.53 MB

### Dataset Summary

NoisyNER is a dataset for the evaluation of methods to handle noisy labels when training machine learning models. 

- Entity Types: `PER`, `ORG`, `LOC`
  
It is from the NLP/Information Extraction domain and was created through a realistic distant supervision technique. Some highlights and interesting aspects of the data are:

- Seven sets of labels with differing noise patterns to evaluate different noise levels on the same instances
- Full parallel clean labels available to compute upper performance bounds or study scenarios where a small amount of gold-standard data can be leveraged
- Skewed label distribution (typical for Named Entity Recognition tasks)
- For some label sets: noise level higher than the true label probability
- Sequential dependencies between the labels

For more details on the dataset and its creation process, please refer to the original author's publication https://ojs.aaai.org/index.php/AAAI/article/view/16938 (published at AAAI'21).

This dataset is based on the Estonian NER corpus. For more details see https://aclanthology.org/W13-2412/

### Supported Tasks and Leaderboards

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Languages

The language data in NoisyNER is in Estonian (BCP-47 et)

## Dataset Structure

### Data Instances

An example of 'train' looks as follows.
```
{
  'id': '0',
  'tokens': ['Tallinna', 'õhusaaste', 'suureneb', '.'],
  'lemmas': ['Tallinn+0', 'õhu_saaste+0', 'suurene+b', '.'],
  'grammar': ['_H_ sg g', '_S_ sg n', '_V_ b', '_Z_'],
  'ner_tags': [5, 0, 0, 0]
}
```

### Data Fields

The data fields are the same among all splits.

- `id`: a `string` feature.
- `tokens`: a `list` of `string` features.
- `lemmas`: a `list` of `string` features.
- `grammar`: a `list` of `string` features.
- `ner_tags`: a `list` of classification labels (`int`). Full tagset with indices:

```python
{'O': 0, 'B-PER': 1, 'I-PER': 2, 'B-ORG': 3, 'I-ORG': 4, 'B-LOC': 5, 'I-LOC': 6}
```

### Data Splits

The splits are the same across all configurations.

|train|validation|test|
|----:|---------:|---:|
|11365|      1480|1433|

## Dataset Creation

### Curation Rationale

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Source Data

#### Initial Data Collection and Normalization

Tkachenko et al (2013) collected 572 news stories published in the local online newspapers [Delfi](http://delfi.ee/) and [Postimees](http://postimees.ee/) between 1997 and 2009. Selected articles cover both local and international news on a range of topics including politics, economics and sports. The raw text was preprocessed using the morphological disambiguator t3mesta ([Kaalep and
Vaino, 1998](https://www.cl.ut.ee/yllitised/kk_yhest_1998.pdf)) provided by [Filosoft](http://www.filosoft.ee/). The processing steps involve tokenization, lemmatization, part-of-speech tagging, grammatical and morphological analysis. 

#### Who are the source language producers?

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Annotations

#### Annotation process

According to Tkachenko et al (2013) one of the authors manually tagged the corpus and the other author examined the tags, after which conflicting cases were resolved.
The total size of the corpus is 184,638 tokens. Tkachenko et al (2013) provide the following number of named entities in the corpus:

|        | PER  | LOC  | ORG  | Total |
|--------|------|------|------|-------|
|    All | 5762 | 5711 | 3938 | 15411 |
| Unique | 3588 | 1589 | 1987 | 7164  |

Hedderich et al (2021) obtained the noisy labels through a distant supervision/automatic annotation approach. They extracted lists of named entities from Wikidata and matched them against words in the text via the ANEA tool ([Hedderich, Lange, and Klakow 2021](https://arxiv.org/abs/2102.13129)). They also used heuristic functions to correct errors caused by non-complete lists of entities,
grammatical complexities of Estonian that do not allow simple string matching or entity lists in conflict with each other. For instance, they normalized the grammatical form of a word or excluded certain high false-positive words. They provide seven sets of labels that differ in the noise process. This results in 8 different configurations, when added to the original split with clean labels.

#### Who are the annotators?

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Personal and Sensitive Information

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Discussion of Biases

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Other Known Limitations

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

## Additional Information

### Dataset Curators

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Licensing Information

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)


### Citation Information

```
@inproceedings{tkachenko-etal-2013-named,
    title = "Named Entity Recognition in {E}stonian",
    author = "Tkachenko, Alexander  and
      Petmanson, Timo  and
      Laur, Sven",
    booktitle = "Proceedings of the 4th Biennial International Workshop on {B}alto-{S}lavic Natural Language Processing",
    month = aug,
    year = "2013",
    address = "Sofia, Bulgaria",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/W13-2412",
    pages = "78--83",
}
@article{Hedderich_Zhu_Klakow_2021, 
    title={Analysing the Noise Model Error for Realistic Noisy Label Data}, 
    author={Hedderich, Michael A. and Zhu, Dawei and Klakow, Dietrich},  
    volume={35}, 
    url={https://ojs.aaai.org/index.php/AAAI/article/view/16938}, 
    number={9}, 
    journal={Proceedings of the AAAI Conference on Artificial Intelligence},
    year={2021}, 
    month={May}, 
    pages={7675-7684}, 
}
```

### Contributions

Thanks to [@phucdev](https://github.com/phucdev) for adding this dataset.