Datasets:
Tasks:
Token Classification
Sub-tasks:
named-entity-recognition
Languages:
English
Size:
10K<n<100K
License:
File size: 10,625 Bytes
e0f61d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""FabNER is a manufacturing text corpus of 350,000+ words for Named Entity Recognition."""
import datasets
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@article{DBLP:journals/jim/KumarS22,
author = {Aman Kumar and
Binil Starly},
title = {"FabNER": information extraction from manufacturing process science
domain literature using named entity recognition},
journal = {J. Intell. Manuf.},
volume = {33},
number = {8},
pages = {2393--2407},
year = {2022},
url = {https://doi.org/10.1007/s10845-021-01807-x},
doi = {10.1007/s10845-021-01807-x},
timestamp = {Sun, 13 Nov 2022 17:52:57 +0100},
biburl = {https://dblp.org/rec/journals/jim/KumarS22.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
"""
# You can copy an official description
_DESCRIPTION = """\
FabNER is a manufacturing text corpus of 350,000+ words for Named Entity Recognition.
It is a collection of abstracts obtained from Web of Science through known journals available in manufacturing process
science research.
For every word, there were categories/entity labels defined namely Material (MATE), Manufacturing Process (MANP),
Machine/Equipment (MACEQ), Application (APPL), Features (FEAT), Mechanical Properties (PRO), Characterization (CHAR),
Parameters (PARA), Enabling Technology (ENAT), Concept/Principles (CONPRI), Manufacturing Standards (MANS) and
BioMedical (BIOP). Annotation was performed in all categories along with the output tag in 'BIOES' format:
B=Beginning, I-Intermediate, O=Outside, E=End, S=Single.
"""
_HOMEPAGE = "https://figshare.com/articles/dataset/Dataset_NER_Manufacturing_-_FabNER_Information_Extraction_from_Manufacturing_Process_Science_Domain_Literature_Using_Named_Entity_Recognition/14782407"
# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URLS = {
"train": "https://figshare.com/ndownloader/files/28405854/S2-train.txt",
"validation": "https://figshare.com/ndownloader/files/28405857/S3-val.txt",
"test": "https://figshare.com/ndownloader/files/28405851/S1-test.txt",
}
def map_fabner_labels(string_tag):
tag = string_tag[2:]
# MATERIAL (FABNER)
if tag == "MATE":
return "Material"
# MANUFACTURING PROCESS (FABNER)
elif tag == "MANP":
return "Method"
# MACHINE/EQUIPMENT, MECHANICAL PROPERTIES, CHARACTERIZATION, ENABLING TECHNOLOGY (FABNER)
elif tag in ["MACEQ", "PRO", "CHAR", "ENAT"]:
return "Technological System"
# APPLICATION (FABNER)
elif tag == "APPL":
return "Technical Field"
# FEATURES, PARAMETERS, CONCEPT/PRINCIPLES, MANUFACTURING STANDARDS, BIOMEDICAL, O (FABNER)
else:
return "O"
class FabNER(datasets.GeneratorBasedBuilder):
"""FabNER is a manufacturing text corpus of 350,000+ words for Named Entity Recognition."""
VERSION = datasets.Version("1.2.0")
# This is an example of a dataset with multiple configurations.
# If you don't want/need to define several sub-sets in your dataset,
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
# If you need to make complex sub-parts in the datasets with configurable options
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
# BUILDER_CONFIG_CLASS = MyBuilderConfig
# You will be able to load one or the other configurations in the following list with
# data = datasets.load_dataset('my_dataset', 'first_domain')
# data = datasets.load_dataset('my_dataset', 'second_domain')
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="fabner", version=VERSION,
description="The FabNER dataset with the original BIOES tagging format"),
datasets.BuilderConfig(name="fabner_bio", version=VERSION,
description="The FabNER dataset with BIO tagging format"),
datasets.BuilderConfig(name="fabner_simple", version=VERSION,
description="The FabNER dataset with no tagging format"),
datasets.BuilderConfig(name="text2tech", version=VERSION,
description="The FabNER dataset mapped to the Text2Tech tag set"),
]
DEFAULT_CONFIG_NAME = "fabner"
def _info(self):
entity_types = [
"MATE", # Material
"MANP", # Manufacturing Process
"MACEQ", # Machine/Equipment
"APPL", # Application
"FEAT", # Engineering Features
"PRO", # Mechanical Properties
"CHAR", # Process Characterization
"PARA", # Process Parameters
"ENAT", # Enabling Technology
"CONPRI", # Concept/Principles
"MANS", # Manufacturing Standards
"BIOP", # BioMedical
]
if self.config.name == "text2tech":
class_labels = ["O", "Technological System", "Method", "Material", "Technical Field"]
elif self.config.name == "fabner":
class_labels = ["O"]
for entity_type in entity_types:
class_labels.extend(
[
"B-" + entity_type,
"I-" + entity_type,
"E-" + entity_type,
"S-" + entity_type,
]
)
elif self.config.name == "fabner_bio":
class_labels = ["O"]
for entity_type in entity_types:
class_labels.extend(
[
"B-" + entity_type,
"I-" + entity_type,
]
)
else:
class_labels = ["O"] + entity_types
features = datasets.Features(
{
"id": datasets.Value("string"),
"tokens": datasets.Sequence(datasets.Value("string")),
"ner_tags": datasets.Sequence(
datasets.features.ClassLabel(
names=class_labels
)
),
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
# supervised_keys=("sentence", "label"),
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
downloaded_files = dl_manager.download_and_extract(_URLS)
return [datasets.SplitGenerator(name=i, gen_kwargs={"filepath": downloaded_files[str(i)]})
for i in [datasets.Split.TRAIN, datasets.Split.VALIDATION, datasets.Split.TEST]]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, filepath):
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
with open(filepath, encoding="utf-8") as f:
guid = 0
tokens = []
ner_tags = []
for line in f:
if line == "" or line == "\n":
if tokens:
yield guid, {
"id": str(guid),
"tokens": tokens,
"ner_tags": ner_tags,
}
guid += 1
tokens = []
ner_tags = []
else:
splits = line.split(" ")
tokens.append(splits[0])
ner_tag = splits[1].rstrip()
if self.config.name == "fabner_simple":
if ner_tag == "O":
ner_tag = "O"
else:
ner_tag = ner_tag.split("-")[1]
elif self.config.name == "fabner_bio":
if ner_tag == "O":
ner_tag = "O"
else:
ner_tag = ner_tag.replace("S-", "B-").replace("E-", "I-")
elif self.config.name == "text2tech":
ner_tag = map_fabner_labels(ner_tag)
ner_tags.append(ner_tag)
# last example
if tokens:
yield guid, {
"id": str(guid),
"tokens": tokens,
"ner_tags": ner_tags,
} |