File size: 4,595 Bytes
ae36bb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75ffe11
 
 
ae36bb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75ffe11
ae36bb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# coding=utf-8
# Copyright 2020 HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""Introduction to People's Daily Dataset"""

import datasets


logger = datasets.logging.get_logger(__name__)


_DESCRIPTION = """\
People's Daily NER Dataset is a commonly used dataset for Chinese NER, with
text from People's Daily (人民日报), the largest official newspaper.

The dataset is in BIO scheme. Entity types are: PER (person), ORG (organization)
and LOC (location).
"""

_URL = "https://raw.githubusercontent.com/OYE93/Chinese-NLP-Corpus/master/NER/People's%20Daily/"
_TRAINING_FILE = "example.train"
_DEV_FILE = "example.dev"
_TEST_FILE = "example.test"


class PeoplesDailyConfig(datasets.BuilderConfig):
    """BuilderConfig for People's Daily NER"""

    def __init__(self, **kwargs):
        """BuilderConfig for People's Daily NER.

        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(PeoplesDailyConfig, self).__init__(**kwargs)


class PeoplesDailyNer(datasets.GeneratorBasedBuilder):
    """People's Daily NER dataset."""

    BUILDER_CONFIGS = [
        PeoplesDailyConfig(
            name="peoples_daily_ner", version=datasets.Version("1.0.0"), description="People's Daily NER dataset"
        ),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "tokens": datasets.Sequence(datasets.Value("string")),
                    "ner_tags": datasets.Sequence(
                        datasets.features.ClassLabel(
                            names=[
                                "O",
                                "B-PER",
                                "I-PER",
                                "B-ORG",
                                "I-ORG",
                                "B-LOC",
                                "I-LOC",
                            ]
                        )
                    ),
                }
            ),
            supervised_keys=None,
            homepage="https://github.com/OYE93/Chinese-NLP-Corpus/tree/master/NER/People's%20Daily",
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        urls_to_download = {
            "train": f"{_URL}{_TRAINING_FILE}",
            "dev": f"{_URL}{_DEV_FILE}",
            "test": f"{_URL}{_TEST_FILE}",
        }
        downloaded_files = dl_manager.download_and_extract(urls_to_download)

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
            datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
            datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
        ]

    def _generate_examples(self, filepath):
        logger.info("⏳ Generating examples from = %s", filepath)
        with open(filepath, encoding="utf-8") as f:
            guid = 0
            tokens = []
            ner_tags = []
            for line in f:
                line_stripped = line.strip()
                if line_stripped == "":
                    if tokens:
                        yield guid, {
                            "id": str(guid),
                            "tokens": tokens,
                            "ner_tags": ner_tags,
                        }
                        guid += 1
                        tokens = []
                        ner_tags = []
                else:
                    splits = line_stripped.split(" ")
                    if len(splits) == 1:
                        splits.append("O")
                    tokens.append(splits[0])
                    ner_tags.append(splits[1])
            # last example
            yield guid, {
                "id": str(guid),
                "tokens": tokens,
                "ner_tags": ner_tags,
            }