pathikg commited on
Commit
4c61808
·
verified ·
1 Parent(s): 6c9db25

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +170 -40
README.md CHANGED
@@ -1,42 +1,172 @@
1
  ---
2
- dataset_info:
3
- features:
4
- - name: width
5
- dtype: int64
6
- - name: height
7
- dtype: int64
8
- - name: objects
9
- struct:
10
- - name: bbox
11
- sequence:
12
- sequence: float32
13
- - name: category
14
- sequence:
15
- class_label:
16
- names:
17
- '0': drone
18
- - name: area
19
- sequence: float32
20
- - name: id
21
- sequence: int64
22
- - name: image
23
- dtype: image
24
- - name: image_id
25
- dtype: int64
26
- splits:
27
- - name: train
28
- num_bytes: 4366097188.444
29
- num_examples: 51446
30
- - name: test
31
- num_bytes: 288738963.625
32
- num_examples: 2625
33
- download_size: 4652332534
34
- dataset_size: 4654836152.069
35
- configs:
36
- - config_name: default
37
- data_files:
38
- - split: train
39
- path: data/train-*
40
- - split: test
41
- path: data/test-*
42
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: mit
3
+ task_categories:
4
+ - object-detection
5
+ size_categories:
6
+ - 10K<n<100K
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  ---
8
+
9
+ # Dataset Card for Drone Detection Dataset
10
+
11
+ <!-- Provide a quick summary of the dataset. -->
12
+
13
+ This dataset card describes the processed version of the Drone Detection Dataset, originally curated by Maciej Pawełczyk and Marek Wojtyra, adapted to a COCO-style format for efficient usage in modern deep learning pipelines
14
+
15
+ ## Dataset Details
16
+
17
+ ### Dataset Description
18
+
19
+ The Drone Detection Dataset is a real-world object detection dataset for UAV detection tasks. It includes RGB images annotated with bounding boxes in the COCO format. This dataset is ideal for training and evaluating object detection models like Faster R-CNN, YOLO, and DETR.
20
+
21
+
22
+ - **Curated by:** Maciej Pawełczyk, Marek Wojtyra
23
+ - **Shared by:** [pathikg](https://huggingface.co/pathikg)
24
+ - **Language(s) (NLP):** Not applicable
25
+ - **License:** MIT License
26
+
27
+ ### Dataset Sources [optional]
28
+
29
+ <!-- Provide the basic links for the dataset. -->
30
+
31
+ - **Repository:** https://github.com/Maciullo/DroneDetectionDataset
32
+ - **Paper:** https://ieeexplore.ieee.org/document/9205392
33
+
34
+ ## Uses
35
+
36
+ <!-- Address questions around how the dataset is intended to be used. -->
37
+
38
+ ### Direct Use
39
+
40
+ <!-- This section describes suitable use cases for the dataset. -->
41
+
42
+ This dataset is suitable for:
43
+
44
+ - Training object detection models.
45
+ - Research on UAV detection and monitoring in various environments and lighting conditions.
46
+
47
+
48
+ ### Out-of-Scope Use
49
+
50
+ <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->
51
+
52
+ Out-of-Scope Use
53
+ - The dataset is not ideal for real-time UAV tracking.
54
+ - It may not generalize well to unseen drone types or environments without further fine-tuning.
55
+
56
+ ## Dataset Structure
57
+
58
+ <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
59
+
60
+ The dataset is structured as a Hugging Face DatasetDict with train and test splits.
61
+ Each split contains features:
62
+
63
+ ```python
64
+ DatasetDict({
65
+ train: Dataset({
66
+ features: ['width', 'height', 'objects', 'image', 'image_id'],
67
+ num_rows: 51446
68
+ }),
69
+ test: Dataset({
70
+ features: ['width', 'height', 'objects', 'image', 'image_id'],
71
+ num_rows: 2625
72
+ })
73
+ })
74
+ ```
75
+
76
+ ### Example Datapoint
77
+
78
+ ```python
79
+ {
80
+ 'width': 640,
81
+ 'height': 480,
82
+ 'objects': {
83
+ 'bbox': [[281.0, 210.0, 25.0, 19.0]], # COCO format: [x, y, width, height]
84
+ 'category': [0], # Category index for the drone
85
+ 'area': [475.0], # Area of the bounding box
86
+ 'id': [0] # Object ID
87
+ },
88
+ 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x480>,
89
+ 'image_id': 2
90
+ }
91
+ ```
92
+
93
+ ### Features
94
+ - width and height: Dimensions of the image.
95
+ - objects:
96
+ - bbox: Bounding boxes in COCO format [x, y, width, height].
97
+ - category: Class labels (0 for drones).
98
+ - area: Area of each bounding box.
99
+ - id: Unique ID for each object.
100
+ - image: The image as a PIL object.
101
+ - image_id: Unique identifier for the image.
102
+
103
+ ## Dataset Creation
104
+
105
+ ### Curation Rationale
106
+
107
+ <!-- Motivation for the creation of this dataset. -->
108
+
109
+ The dataset was designed to facilitate UAV detection, addressing challenges like detecting small objects across varying scales and environments. It focuses on static object detection rather than tracking.
110
+
111
+ ### Source Data
112
+
113
+ <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->
114
+
115
+ #### Data Collection and Processing
116
+
117
+ <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
118
+
119
+ - Source: Frames extracted from publicly available YouTube videos.
120
+ - Processing: Bounding boxes were annotated manually in COCO format for initial samples and later supplemented with automated annotations using trained models.
121
+
122
+ #### Who are the source data producers?
123
+
124
+ <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. -->
125
+
126
+ The source videos were created by various YouTube users. The dataset annotations were curated as part of the authors' research.
127
+
128
+ ## Bias, Risks, and Limitations
129
+
130
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
131
+
132
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
133
+
134
+ - Bias: The dataset includes drones in specific environments and lighting conditions, which may limit its generalizability.
135
+ - Limitations:
136
+ - The dataset does not cover all drone types or edge cases.
137
+ - It may not be suitable for real-time applications without modifications.
138
+
139
+ ## Citation [optional]
140
+
141
+ <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
142
+
143
+ **BibTeX:**
144
+
145
+ ```
146
+ @article{pawelczyk2020drone,
147
+ title={Real World Object Detection Dataset for Quadcopter Unmanned Aerial Vehicle Detection},
148
+ author={Pawełczyk, Maciej and Wojtyra, Marek},
149
+ journal={IEEE Access},
150
+ volume={8},
151
+ pages={174394--174409},
152
+ year={2020},
153
+ publisher={IEEE},
154
+ doi={10.1109/ACCESS.2020.3026192}
155
+ }
156
+ ```
157
+
158
+ **APA:**
159
+
160
+ Pawełczyk, M., & Wojtyra, M. (2020). Real World Object Detection Dataset for Quadcopter Unmanned Aerial Vehicle Detection. IEEE Access, 8, 174394-174409. https://doi.org/10.1109/ACCESS.2020.3026192
161
+
162
+ ## More Information
163
+
164
+ For details, refer to the [original GitHub repository](https://github.com/Maciullo/DroneDetectionDataset).
165
+
166
+ ## Dataset Card Authors [optional]
167
+
168
+ - me, [pathikg](https://huggingface.co/pathikg)
169
+
170
+ ## Dataset Card Contact
171
+
172
+ For questions, contact [pathikg](https://huggingface.co/pathikg)