Bharat Ramanathan
commited on
Commit
•
5bd24a8
1
Parent(s):
f4dae89
add loading script and readme
Browse files- README.md +144 -0
- telugu_asr_corpus.py +147 -0
README.md
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
annotations_creators:
|
3 |
+
- found
|
4 |
+
language:
|
5 |
+
- te
|
6 |
+
language_creators:
|
7 |
+
- found
|
8 |
+
license:
|
9 |
+
- cc-by-4.0
|
10 |
+
multilinguality:
|
11 |
+
- monolingual
|
12 |
+
pretty_name: Telugu ASR Corpus
|
13 |
+
size_categories:
|
14 |
+
- 100K<n<1M
|
15 |
+
source_datasets:
|
16 |
+
- extended|openslr
|
17 |
+
tags: []
|
18 |
+
task_categories:
|
19 |
+
- automatic-speech-recognition
|
20 |
+
task_ids: []
|
21 |
+
---
|
22 |
+
|
23 |
+
# Dataset Card for [Telugu Asr Corpus]
|
24 |
+
|
25 |
+
## Table of Contents
|
26 |
+
- [Table of Contents](#table-of-contents)
|
27 |
+
- [Dataset Description](#dataset-description)
|
28 |
+
- [Dataset Summary](#dataset-summary)
|
29 |
+
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
|
30 |
+
- [Languages](#languages)
|
31 |
+
- [Dataset Structure](#dataset-structure)
|
32 |
+
- [Data Instances](#data-instances)
|
33 |
+
- [Data Fields](#data-fields)
|
34 |
+
- [Data Splits](#data-splits)
|
35 |
+
- [Dataset Creation](#dataset-creation)
|
36 |
+
- [Curation Rationale](#curation-rationale)
|
37 |
+
- [Source Data](#source-data)
|
38 |
+
- [Annotations](#annotations)
|
39 |
+
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
40 |
+
- [Considerations for Using the Data](#considerations-for-using-the-data)
|
41 |
+
- [Social Impact of Dataset](#social-impact-of-dataset)
|
42 |
+
- [Discussion of Biases](#discussion-of-biases)
|
43 |
+
- [Other Known Limitations](#other-known-limitations)
|
44 |
+
- [Additional Information](#additional-information)
|
45 |
+
- [Dataset Curators](#dataset-curators)
|
46 |
+
- [Licensing Information](#licensing-information)
|
47 |
+
- [Citation Information](#citation-information)
|
48 |
+
- [Contributions](#contributions)
|
49 |
+
|
50 |
+
## Dataset Description
|
51 |
+
|
52 |
+
- **Homepage:**
|
53 |
+
- **Repository:**
|
54 |
+
- **Paper:**
|
55 |
+
- **Leaderboard:**
|
56 |
+
- **Point of Contact:**
|
57 |
+
|
58 |
+
### Dataset Summary
|
59 |
+
|
60 |
+
[More Information Needed]
|
61 |
+
|
62 |
+
### Supported Tasks and Leaderboards
|
63 |
+
|
64 |
+
[More Information Needed]
|
65 |
+
|
66 |
+
### Languages
|
67 |
+
|
68 |
+
[More Information Needed]
|
69 |
+
|
70 |
+
## Dataset Structure
|
71 |
+
|
72 |
+
### Data Instances
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
### Data Fields
|
77 |
+
|
78 |
+
[More Information Needed]
|
79 |
+
|
80 |
+
### Data Splits
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
## Dataset Creation
|
85 |
+
|
86 |
+
### Curation Rationale
|
87 |
+
|
88 |
+
[More Information Needed]
|
89 |
+
|
90 |
+
### Source Data
|
91 |
+
|
92 |
+
#### Initial Data Collection and Normalization
|
93 |
+
|
94 |
+
[More Information Needed]
|
95 |
+
|
96 |
+
#### Who are the source language producers?
|
97 |
+
|
98 |
+
[More Information Needed]
|
99 |
+
|
100 |
+
### Annotations
|
101 |
+
|
102 |
+
#### Annotation process
|
103 |
+
|
104 |
+
[More Information Needed]
|
105 |
+
|
106 |
+
#### Who are the annotators?
|
107 |
+
|
108 |
+
[More Information Needed]
|
109 |
+
|
110 |
+
### Personal and Sensitive Information
|
111 |
+
|
112 |
+
[More Information Needed]
|
113 |
+
|
114 |
+
## Considerations for Using the Data
|
115 |
+
|
116 |
+
### Social Impact of Dataset
|
117 |
+
|
118 |
+
[More Information Needed]
|
119 |
+
|
120 |
+
### Discussion of Biases
|
121 |
+
|
122 |
+
[More Information Needed]
|
123 |
+
|
124 |
+
### Other Known Limitations
|
125 |
+
|
126 |
+
[More Information Needed]
|
127 |
+
|
128 |
+
## Additional Information
|
129 |
+
|
130 |
+
### Dataset Curators
|
131 |
+
|
132 |
+
[More Information Needed]
|
133 |
+
|
134 |
+
### Licensing Information
|
135 |
+
|
136 |
+
[More Information Needed]
|
137 |
+
|
138 |
+
### Citation Information
|
139 |
+
|
140 |
+
[More Information Needed]
|
141 |
+
|
142 |
+
### Contributions
|
143 |
+
|
144 |
+
Thanks to [@parambharat](https://github.com/parambharat) for adding this dataset.
|
telugu_asr_corpus.py
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
"""Filtered Telugu ASR corpus collected from fleurs, openslr66, and ucla corpora filtered for duration between 3 - 30 secs"""
|
16 |
+
|
17 |
+
|
18 |
+
import json
|
19 |
+
import os
|
20 |
+
|
21 |
+
import datasets
|
22 |
+
|
23 |
+
_CITATION = """\
|
24 |
+
@misc{https://doi.org/10.48550/arxiv.2211.09536,
|
25 |
+
doi = {10.48550/ARXIV.2211.09536},
|
26 |
+
|
27 |
+
url = {https://arxiv.org/abs/2211.09536},
|
28 |
+
|
29 |
+
author = {Kumar, Gokul Karthik and S, Praveen and Kumar, Pratyush and Khapra, Mitesh M. and Nandakumar, Karthik},
|
30 |
+
|
31 |
+
keywords = {Computation and Language (cs.CL), Machine Learning (cs.LG), Sound (cs.SD), Audio and Speech Processing (eess.AS), FOS: Computer and information sciences, FOS: Computer and information sciences, FOS: Electrical engineering, electronic engineering, information engineering, FOS: Electrical engineering, electronic engineering, information engineering},
|
32 |
+
|
33 |
+
title = {Towards Building Text-To-Speech Systems for the Next Billion Users},
|
34 |
+
|
35 |
+
publisher = {arXiv},
|
36 |
+
|
37 |
+
year = {2022},
|
38 |
+
|
39 |
+
copyright = {arXiv.org perpetual, non-exclusive license}
|
40 |
+
}
|
41 |
+
|
42 |
+
@inproceedings{commonvoice:2020,
|
43 |
+
author = {Ardila, R. and Branson, M. and Davis, K. and Henretty, M. and Kohler, M. and Meyer, J. and Morais, R. and Saunders, L. and Tyers, F. M. and Weber, G.},
|
44 |
+
title = {Common Voice: A Massively-Multilingual Speech Corpus},
|
45 |
+
booktitle = {Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020)},
|
46 |
+
pages = {4211--4215},
|
47 |
+
year = 2020
|
48 |
+
}
|
49 |
+
|
50 |
+
@misc{https://doi.org/10.48550/arxiv.2205.12446,
|
51 |
+
doi = {10.48550/ARXIV.2205.12446},
|
52 |
+
|
53 |
+
url = {https://arxiv.org/abs/2205.12446},
|
54 |
+
|
55 |
+
author = {Conneau, Alexis and Ma, Min and Khanuja, Simran and Zhang, Yu and Axelrod, Vera and Dalmia, Siddharth and Riesa, Jason and Rivera, Clara and Bapna, Ankur},
|
56 |
+
|
57 |
+
keywords = {Computation and Language (cs.CL), Machine Learning (cs.LG), Sound (cs.SD), Audio and Speech Processing (eess.AS), FOS: Computer and information sciences, FOS: Computer and information sciences, FOS: Electrical engineering, electronic engineering, information engineering, FOS: Electrical engineering, electronic engineering, information engineering},
|
58 |
+
|
59 |
+
title = {FLEURS: Few-shot Learning Evaluation of Universal Representations of Speech},
|
60 |
+
|
61 |
+
publisher = {arXiv},
|
62 |
+
|
63 |
+
year = {2022},
|
64 |
+
|
65 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
66 |
+
}
|
67 |
+
|
68 |
+
"""
|
69 |
+
|
70 |
+
_DESCRIPTION = """\
|
71 |
+
The corpus contains roughly 360 hours of audio and transcripts in Telugu language. The transcripts have beed de-duplicated using exact match deduplication.
|
72 |
+
"""
|
73 |
+
|
74 |
+
_HOMEPAGE = ""
|
75 |
+
|
76 |
+
_LICENSE = "https://creativecommons.org/licenses/"
|
77 |
+
|
78 |
+
|
79 |
+
_METADATA_URLS = {
|
80 |
+
"train": "data/train.jsonl",
|
81 |
+
}
|
82 |
+
_URLS = {
|
83 |
+
"train": "data/train.tar.gz",
|
84 |
+
|
85 |
+
}
|
86 |
+
|
87 |
+
class TeluguASRCorpus(datasets.GeneratorBasedBuilder):
|
88 |
+
"""Telugu ASR Corpus contains transcribed speech corpus for training ASR systems for Telugu language."""
|
89 |
+
|
90 |
+
VERSION = datasets.Version("1.1.0")
|
91 |
+
def _info(self):
|
92 |
+
features = datasets.Features(
|
93 |
+
{
|
94 |
+
"audio": datasets.Audio(sampling_rate=16_000),
|
95 |
+
"path": datasets.Value("string"),
|
96 |
+
"sentence": datasets.Value("string"),
|
97 |
+
"length": datasets.Value("float")
|
98 |
+
}
|
99 |
+
)
|
100 |
+
return datasets.DatasetInfo(
|
101 |
+
description=_DESCRIPTION,
|
102 |
+
features=features,
|
103 |
+
supervised_keys=("sentence", "label"),
|
104 |
+
homepage=_HOMEPAGE,
|
105 |
+
license=_LICENSE,
|
106 |
+
citation=_CITATION,
|
107 |
+
)
|
108 |
+
|
109 |
+
def _split_generators(self, dl_manager):
|
110 |
+
metadata_paths = dl_manager.download(_METADATA_URLS)
|
111 |
+
train_archive = dl_manager.download(_URLS["train"])
|
112 |
+
local_extracted_train_archive = dl_manager.extract(train_archive) if not dl_manager.is_streaming else None
|
113 |
+
train_dir = "train"
|
114 |
+
|
115 |
+
return [
|
116 |
+
datasets.SplitGenerator(
|
117 |
+
name=datasets.Split.TRAIN,
|
118 |
+
gen_kwargs={
|
119 |
+
"metadata_path": metadata_paths["train"],
|
120 |
+
"local_extracted_archive": local_extracted_train_archive,
|
121 |
+
"path_to_clips": train_dir,
|
122 |
+
"audio_files": dl_manager.iter_archive(train_archive),
|
123 |
+
},
|
124 |
+
),
|
125 |
+
]
|
126 |
+
|
127 |
+
def _generate_examples(self, metadata_path, local_extracted_archive, path_to_clips, audio_files):
|
128 |
+
"""Yields examples as (key, example) tuples."""
|
129 |
+
examples = {}
|
130 |
+
with open(metadata_path, encoding="utf-8") as f:
|
131 |
+
for key, row in enumerate(f):
|
132 |
+
data = json.loads(row)
|
133 |
+
examples[data["path"]] = data
|
134 |
+
inside_clips_dir = False
|
135 |
+
id_ = 0
|
136 |
+
for path, f in audio_files:
|
137 |
+
if path.startswith(path_to_clips):
|
138 |
+
inside_clips_dir = True
|
139 |
+
if path in examples:
|
140 |
+
result = examples[path]
|
141 |
+
path = os.path.join(local_extracted_archive, path) if local_extracted_archive else path
|
142 |
+
result["audio"] = {"path": path, "bytes": f.read()}
|
143 |
+
result["path"] = path
|
144 |
+
yield id_, result
|
145 |
+
id_ += 1
|
146 |
+
elif inside_clips_dir:
|
147 |
+
break
|