title
stringlengths
5
65
summary
stringlengths
5
98.2k
context
stringlengths
9
121k
path
stringlengths
10
84
Plotting
The following functions are contained in the pandas.plotting module. andrews_curves(frame, class_column[, ax, ...]) Generate a matplotlib plot for visualising clusters of multivariate data. autocorrelation_plot(series[, ax]) Autocorrelation plot for time series. bootstrap_plot(series[, fig, size, samples]) Bootstrap plot on mean, median and mid-range statistics. boxplot(data[, column, by, ax, fontsize, ...]) Make a box plot from DataFrame columns. deregister_matplotlib_converters() Remove pandas formatters and converters. lag_plot(series[, lag, ax]) Lag plot for time series. parallel_coordinates(frame, class_column[, ...]) Parallel coordinates plotting. plot_params Stores pandas plotting options. radviz(frame, class_column[, ax, color, ...]) Plot a multidimensional dataset in 2D. register_matplotlib_converters() Register pandas formatters and converters with matplotlib. scatter_matrix(frame[, alpha, figsize, ax, ...]) Draw a matrix of scatter plots. table(ax, data[, rowLabels, colLabels]) Helper function to convert DataFrame and Series to matplotlib.table.
reference/plotting.html
null
pandas.tseries.offsets.QuarterEnd.n
pandas.tseries.offsets.QuarterEnd.n
QuarterEnd.n#
reference/api/pandas.tseries.offsets.QuarterEnd.n.html
pandas.DataFrame.rpow
`pandas.DataFrame.rpow` Get Exponential power of dataframe and other, element-wise (binary operator rpow). ``` >>> df = pd.DataFrame({'angles': [0, 3, 4], ... 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle']) >>> df angles degrees circle 0 360 triangle 3 180 rectangle 4 360 ```
DataFrame.rpow(other, axis='columns', level=None, fill_value=None)[source]# Get Exponential power of dataframe and other, element-wise (binary operator rpow). Equivalent to other ** dataframe, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, pow. Among flexible wrappers (add, sub, mul, div, mod, pow) to arithmetic operators: +, -, *, /, //, %, **. Parameters otherscalar, sequence, Series, dict or DataFrameAny single or multiple element data structure, or list-like object. axis{0 or ‘index’, 1 or ‘columns’}Whether to compare by the index (0 or ‘index’) or columns. (1 or ‘columns’). For Series input, axis to match Series index on. levelint or labelBroadcast across a level, matching Index values on the passed MultiIndex level. fill_valuefloat or None, default NoneFill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing. Returns DataFrameResult of the arithmetic operation. See also DataFrame.addAdd DataFrames. DataFrame.subSubtract DataFrames. DataFrame.mulMultiply DataFrames. DataFrame.divDivide DataFrames (float division). DataFrame.truedivDivide DataFrames (float division). DataFrame.floordivDivide DataFrames (integer division). DataFrame.modCalculate modulo (remainder after division). DataFrame.powCalculate exponential power. Notes Mismatched indices will be unioned together. Examples >>> df = pd.DataFrame({'angles': [0, 3, 4], ... 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle']) >>> df angles degrees circle 0 360 triangle 3 180 rectangle 4 360 Add a scalar with operator version which return the same results. >>> df + 1 angles degrees circle 1 361 triangle 4 181 rectangle 5 361 >>> df.add(1) angles degrees circle 1 361 triangle 4 181 rectangle 5 361 Divide by constant with reverse version. >>> df.div(10) angles degrees circle 0.0 36.0 triangle 0.3 18.0 rectangle 0.4 36.0 >>> df.rdiv(10) angles degrees circle inf 0.027778 triangle 3.333333 0.055556 rectangle 2.500000 0.027778 Subtract a list and Series by axis with operator version. >>> df - [1, 2] angles degrees circle -1 358 triangle 2 178 rectangle 3 358 >>> df.sub([1, 2], axis='columns') angles degrees circle -1 358 triangle 2 178 rectangle 3 358 >>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']), ... axis='index') angles degrees circle -1 359 triangle 2 179 rectangle 3 359 Multiply a dictionary by axis. >>> df.mul({'angles': 0, 'degrees': 2}) angles degrees circle 0 720 triangle 0 360 rectangle 0 720 >>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index') angles degrees circle 0 0 triangle 6 360 rectangle 12 1080 Multiply a DataFrame of different shape with operator version. >>> other = pd.DataFrame({'angles': [0, 3, 4]}, ... index=['circle', 'triangle', 'rectangle']) >>> other angles circle 0 triangle 3 rectangle 4 >>> df * other angles degrees circle 0 NaN triangle 9 NaN rectangle 16 NaN >>> df.mul(other, fill_value=0) angles degrees circle 0 0.0 triangle 9 0.0 rectangle 16 0.0 Divide by a MultiIndex by level. >>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6], ... 'degrees': [360, 180, 360, 360, 540, 720]}, ... index=[['A', 'A', 'A', 'B', 'B', 'B'], ... ['circle', 'triangle', 'rectangle', ... 'square', 'pentagon', 'hexagon']]) >>> df_multindex angles degrees A circle 0 360 triangle 3 180 rectangle 4 360 B square 4 360 pentagon 5 540 hexagon 6 720 >>> df.div(df_multindex, level=1, fill_value=0) angles degrees A circle NaN 1.0 triangle 1.0 1.0 rectangle 1.0 1.0 B square 0.0 0.0 pentagon 0.0 0.0 hexagon 0.0 0.0
reference/api/pandas.DataFrame.rpow.html
pandas.core.resample.Resampler.indices
`pandas.core.resample.Resampler.indices` Dict {group name -> group indices}.
property Resampler.indices[source]# Dict {group name -> group indices}.
reference/api/pandas.core.resample.Resampler.indices.html
pandas arrays, scalars, and data types
Objects# For most data types, pandas uses NumPy arrays as the concrete objects contained with a Index, Series, or DataFrame. For some data types, pandas extends NumPy’s type system. String aliases for these types can be found at dtypes. Kind of Data pandas Data Type Scalar Array TZ-aware datetime DatetimeTZDtype Timestamp Datetimes Timedeltas (none) Timedelta Timedeltas Period (time spans) PeriodDtype Period Periods Intervals IntervalDtype Interval Intervals Nullable Integer Int64Dtype, … (none) Nullable integer Categorical CategoricalDtype (none) Categoricals Sparse SparseDtype (none) Sparse Strings StringDtype str Strings Boolean (with NA) BooleanDtype bool Nullable Boolean PyArrow ArrowDtype Python Scalars or NA PyArrow pandas and third-party libraries can extend NumPy’s type system (see Extension types). The top-level array() method can be used to create a new array, which may be stored in a Series, Index, or as a column in a DataFrame. array(data[, dtype, copy]) Create an array. PyArrow# Warning This feature is experimental, and the API can change in a future release without warning. The arrays.ArrowExtensionArray is backed by a pyarrow.ChunkedArray with a pyarrow.DataType instead of a NumPy array and data type. The .dtype of a arrays.ArrowExtensionArray is an ArrowDtype. Pyarrow provides similar array and data type support as NumPy including first-class nullability support for all data types, immutability and more. Note For string types (pyarrow.string(), string[pyarrow]), PyArrow support is still facilitated by arrays.ArrowStringArray and StringDtype("pyarrow"). See the string section below. While individual values in an arrays.ArrowExtensionArray are stored as a PyArrow objects, scalars are returned as Python scalars corresponding to the data type, e.g. a PyArrow int64 will be returned as Python int, or NA for missing values. arrays.ArrowExtensionArray(values) Pandas ExtensionArray backed by a PyArrow ChunkedArray. ArrowDtype(pyarrow_dtype) An ExtensionDtype for PyArrow data types. Datetimes# NumPy cannot natively represent timezone-aware datetimes. pandas supports this with the arrays.DatetimeArray extension array, which can hold timezone-naive or timezone-aware values. Timestamp, a subclass of datetime.datetime, is pandas’ scalar type for timezone-naive or timezone-aware datetime data. Timestamp([ts_input, freq, tz, unit, year, ...]) Pandas replacement for python datetime.datetime object. Properties# Timestamp.asm8 Return numpy datetime64 format in nanoseconds. Timestamp.day Timestamp.dayofweek Return day of the week. Timestamp.day_of_week Return day of the week. Timestamp.dayofyear Return the day of the year. Timestamp.day_of_year Return the day of the year. Timestamp.days_in_month Return the number of days in the month. Timestamp.daysinmonth Return the number of days in the month. Timestamp.fold Timestamp.hour Timestamp.is_leap_year Return True if year is a leap year. Timestamp.is_month_end Return True if date is last day of month. Timestamp.is_month_start Return True if date is first day of month. Timestamp.is_quarter_end Return True if date is last day of the quarter. Timestamp.is_quarter_start Return True if date is first day of the quarter. Timestamp.is_year_end Return True if date is last day of the year. Timestamp.is_year_start Return True if date is first day of the year. Timestamp.max Timestamp.microsecond Timestamp.min Timestamp.minute Timestamp.month Timestamp.nanosecond Timestamp.quarter Return the quarter of the year. Timestamp.resolution Timestamp.second Timestamp.tz Alias for tzinfo. Timestamp.tzinfo Timestamp.value Timestamp.week Return the week number of the year. Timestamp.weekofyear Return the week number of the year. Timestamp.year Methods# Timestamp.astimezone(tz) Convert timezone-aware Timestamp to another time zone. Timestamp.ceil(freq[, ambiguous, nonexistent]) Return a new Timestamp ceiled to this resolution. Timestamp.combine(date, time) Combine date, time into datetime with same date and time fields. Timestamp.ctime Return ctime() style string. Timestamp.date Return date object with same year, month and day. Timestamp.day_name Return the day name of the Timestamp with specified locale. Timestamp.dst Return self.tzinfo.dst(self). Timestamp.floor(freq[, ambiguous, nonexistent]) Return a new Timestamp floored to this resolution. Timestamp.freq Timestamp.freqstr Return the total number of days in the month. Timestamp.fromordinal(ordinal[, freq, tz]) Construct a timestamp from a a proleptic Gregorian ordinal. Timestamp.fromtimestamp(ts) Transform timestamp[, tz] to tz's local time from POSIX timestamp. Timestamp.isocalendar Return a 3-tuple containing ISO year, week number, and weekday. Timestamp.isoformat Return the time formatted according to ISO 8610. Timestamp.isoweekday() Return the day of the week represented by the date. Timestamp.month_name Return the month name of the Timestamp with specified locale. Timestamp.normalize Normalize Timestamp to midnight, preserving tz information. Timestamp.now([tz]) Return new Timestamp object representing current time local to tz. Timestamp.replace([year, month, day, hour, ...]) Implements datetime.replace, handles nanoseconds. Timestamp.round(freq[, ambiguous, nonexistent]) Round the Timestamp to the specified resolution. Timestamp.strftime(format) Return a formatted string of the Timestamp. Timestamp.strptime(string, format) Function is not implemented. Timestamp.time Return time object with same time but with tzinfo=None. Timestamp.timestamp Return POSIX timestamp as float. Timestamp.timetuple Return time tuple, compatible with time.localtime(). Timestamp.timetz Return time object with same time and tzinfo. Timestamp.to_datetime64 Return a numpy.datetime64 object with 'ns' precision. Timestamp.to_numpy Convert the Timestamp to a NumPy datetime64. Timestamp.to_julian_date() Convert TimeStamp to a Julian Date. Timestamp.to_period Return an period of which this timestamp is an observation. Timestamp.to_pydatetime Convert a Timestamp object to a native Python datetime object. Timestamp.today([tz]) Return the current time in the local timezone. Timestamp.toordinal Return proleptic Gregorian ordinal. Timestamp.tz_convert(tz) Convert timezone-aware Timestamp to another time zone. Timestamp.tz_localize(tz[, ambiguous, ...]) Localize the Timestamp to a timezone. Timestamp.tzname Return self.tzinfo.tzname(self). Timestamp.utcfromtimestamp(ts) Construct a naive UTC datetime from a POSIX timestamp. Timestamp.utcnow() Return a new Timestamp representing UTC day and time. Timestamp.utcoffset Return self.tzinfo.utcoffset(self). Timestamp.utctimetuple Return UTC time tuple, compatible with time.localtime(). Timestamp.weekday() Return the day of the week represented by the date. A collection of timestamps may be stored in a arrays.DatetimeArray. For timezone-aware data, the .dtype of a arrays.DatetimeArray is a DatetimeTZDtype. For timezone-naive data, np.dtype("datetime64[ns]") is used. If the data are timezone-aware, then every value in the array must have the same timezone. arrays.DatetimeArray(values[, dtype, freq, copy]) Pandas ExtensionArray for tz-naive or tz-aware datetime data. DatetimeTZDtype([unit, tz]) An ExtensionDtype for timezone-aware datetime data. Timedeltas# NumPy can natively represent timedeltas. pandas provides Timedelta for symmetry with Timestamp. Timedelta([value, unit]) Represents a duration, the difference between two dates or times. Properties# Timedelta.asm8 Return a numpy timedelta64 array scalar view. Timedelta.components Return a components namedtuple-like. Timedelta.days Timedelta.delta (DEPRECATED) Return the timedelta in nanoseconds (ns), for internal compatibility. Timedelta.freq (DEPRECATED) Freq property. Timedelta.is_populated (DEPRECATED) Is_populated property. Timedelta.max Timedelta.microseconds Timedelta.min Timedelta.nanoseconds Return the number of nanoseconds (n), where 0 <= n < 1 microsecond. Timedelta.resolution Timedelta.seconds Timedelta.value Timedelta.view Array view compatibility. Methods# Timedelta.ceil(freq) Return a new Timedelta ceiled to this resolution. Timedelta.floor(freq) Return a new Timedelta floored to this resolution. Timedelta.isoformat Format the Timedelta as ISO 8601 Duration. Timedelta.round(freq) Round the Timedelta to the specified resolution. Timedelta.to_pytimedelta Convert a pandas Timedelta object into a python datetime.timedelta object. Timedelta.to_timedelta64 Return a numpy.timedelta64 object with 'ns' precision. Timedelta.to_numpy Convert the Timedelta to a NumPy timedelta64. Timedelta.total_seconds Total seconds in the duration. A collection of Timedelta may be stored in a TimedeltaArray. arrays.TimedeltaArray(values[, dtype, freq, ...]) Pandas ExtensionArray for timedelta data. Periods# pandas represents spans of times as Period objects. Period# Period([value, freq, ordinal, year, month, ...]) Represents a period of time. Properties# Period.day Get day of the month that a Period falls on. Period.dayofweek Day of the week the period lies in, with Monday=0 and Sunday=6. Period.day_of_week Day of the week the period lies in, with Monday=0 and Sunday=6. Period.dayofyear Return the day of the year. Period.day_of_year Return the day of the year. Period.days_in_month Get the total number of days in the month that this period falls on. Period.daysinmonth Get the total number of days of the month that this period falls on. Period.end_time Get the Timestamp for the end of the period. Period.freq Period.freqstr Return a string representation of the frequency. Period.hour Get the hour of the day component of the Period. Period.is_leap_year Return True if the period's year is in a leap year. Period.minute Get minute of the hour component of the Period. Period.month Return the month this Period falls on. Period.ordinal Period.quarter Return the quarter this Period falls on. Period.qyear Fiscal year the Period lies in according to its starting-quarter. Period.second Get the second component of the Period. Period.start_time Get the Timestamp for the start of the period. Period.week Get the week of the year on the given Period. Period.weekday Day of the week the period lies in, with Monday=0 and Sunday=6. Period.weekofyear Get the week of the year on the given Period. Period.year Return the year this Period falls on. Methods# Period.asfreq Convert Period to desired frequency, at the start or end of the interval. Period.now Return the period of now's date. Period.strftime Returns a formatted string representation of the Period. Period.to_timestamp Return the Timestamp representation of the Period. A collection of Period may be stored in a arrays.PeriodArray. Every period in a arrays.PeriodArray must have the same freq. arrays.PeriodArray(values[, dtype, freq, copy]) Pandas ExtensionArray for storing Period data. PeriodDtype([freq]) An ExtensionDtype for Period data. Intervals# Arbitrary intervals can be represented as Interval objects. Interval Immutable object implementing an Interval, a bounded slice-like interval. Properties# Interval.closed String describing the inclusive side the intervals. Interval.closed_left Check if the interval is closed on the left side. Interval.closed_right Check if the interval is closed on the right side. Interval.is_empty Indicates if an interval is empty, meaning it contains no points. Interval.left Left bound for the interval. Interval.length Return the length of the Interval. Interval.mid Return the midpoint of the Interval. Interval.open_left Check if the interval is open on the left side. Interval.open_right Check if the interval is open on the right side. Interval.overlaps Check whether two Interval objects overlap. Interval.right Right bound for the interval. A collection of intervals may be stored in an arrays.IntervalArray. arrays.IntervalArray(data[, closed, dtype, ...]) Pandas array for interval data that are closed on the same side. IntervalDtype([subtype, closed]) An ExtensionDtype for Interval data. Nullable integer# numpy.ndarray cannot natively represent integer-data with missing values. pandas provides this through arrays.IntegerArray. arrays.IntegerArray(values, mask[, copy]) Array of integer (optional missing) values. Int8Dtype() An ExtensionDtype for int8 integer data. Int16Dtype() An ExtensionDtype for int16 integer data. Int32Dtype() An ExtensionDtype for int32 integer data. Int64Dtype() An ExtensionDtype for int64 integer data. UInt8Dtype() An ExtensionDtype for uint8 integer data. UInt16Dtype() An ExtensionDtype for uint16 integer data. UInt32Dtype() An ExtensionDtype for uint32 integer data. UInt64Dtype() An ExtensionDtype for uint64 integer data. Categoricals# pandas defines a custom data type for representing data that can take only a limited, fixed set of values. The dtype of a Categorical can be described by a CategoricalDtype. CategoricalDtype([categories, ordered]) Type for categorical data with the categories and orderedness. CategoricalDtype.categories An Index containing the unique categories allowed. CategoricalDtype.ordered Whether the categories have an ordered relationship. Categorical data can be stored in a pandas.Categorical Categorical(values[, categories, ordered, ...]) Represent a categorical variable in classic R / S-plus fashion. The alternative Categorical.from_codes() constructor can be used when you have the categories and integer codes already: Categorical.from_codes(codes[, categories, ...]) Make a Categorical type from codes and categories or dtype. The dtype information is available on the Categorical Categorical.dtype The CategoricalDtype for this instance. Categorical.categories The categories of this categorical. Categorical.ordered Whether the categories have an ordered relationship. Categorical.codes The category codes of this categorical. np.asarray(categorical) works by implementing the array interface. Be aware, that this converts the Categorical back to a NumPy array, so categories and order information is not preserved! Categorical.__array__([dtype]) The numpy array interface. A Categorical can be stored in a Series or DataFrame. To create a Series of dtype category, use cat = s.astype(dtype) or Series(..., dtype=dtype) where dtype is either the string 'category' an instance of CategoricalDtype. If the Series is of dtype CategoricalDtype, Series.cat can be used to change the categorical data. See Categorical accessor for more. Sparse# Data where a single value is repeated many times (e.g. 0 or NaN) may be stored efficiently as a arrays.SparseArray. arrays.SparseArray(data[, sparse_index, ...]) An ExtensionArray for storing sparse data. SparseDtype([dtype, fill_value]) Dtype for data stored in SparseArray. The Series.sparse accessor may be used to access sparse-specific attributes and methods if the Series contains sparse values. See Sparse accessor and the user guide for more. Strings# When working with text data, where each valid element is a string or missing, we recommend using StringDtype (with the alias "string"). arrays.StringArray(values[, copy]) Extension array for string data. arrays.ArrowStringArray(values) Extension array for string data in a pyarrow.ChunkedArray. StringDtype([storage]) Extension dtype for string data. The Series.str accessor is available for Series backed by a arrays.StringArray. See String handling for more. Nullable Boolean# The boolean dtype (with the alias "boolean") provides support for storing boolean data (True, False) with missing values, which is not possible with a bool numpy.ndarray. arrays.BooleanArray(values, mask[, copy]) Array of boolean (True/False) data with missing values. BooleanDtype() Extension dtype for boolean data. Utilities# Constructors# api.types.union_categoricals(to_union[, ...]) Combine list-like of Categorical-like, unioning categories. api.types.infer_dtype Return a string label of the type of a scalar or list-like of values. api.types.pandas_dtype(dtype) Convert input into a pandas only dtype object or a numpy dtype object. Data type introspection# api.types.is_bool_dtype(arr_or_dtype) Check whether the provided array or dtype is of a boolean dtype. api.types.is_categorical_dtype(arr_or_dtype) Check whether an array-like or dtype is of the Categorical dtype. api.types.is_complex_dtype(arr_or_dtype) Check whether the provided array or dtype is of a complex dtype. api.types.is_datetime64_any_dtype(arr_or_dtype) Check whether the provided array or dtype is of the datetime64 dtype. api.types.is_datetime64_dtype(arr_or_dtype) Check whether an array-like or dtype is of the datetime64 dtype. api.types.is_datetime64_ns_dtype(arr_or_dtype) Check whether the provided array or dtype is of the datetime64[ns] dtype. api.types.is_datetime64tz_dtype(arr_or_dtype) Check whether an array-like or dtype is of a DatetimeTZDtype dtype. api.types.is_extension_type(arr) (DEPRECATED) Check whether an array-like is of a pandas extension class instance. api.types.is_extension_array_dtype(arr_or_dtype) Check if an object is a pandas extension array type. api.types.is_float_dtype(arr_or_dtype) Check whether the provided array or dtype is of a float dtype. api.types.is_int64_dtype(arr_or_dtype) Check whether the provided array or dtype is of the int64 dtype. api.types.is_integer_dtype(arr_or_dtype) Check whether the provided array or dtype is of an integer dtype. api.types.is_interval_dtype(arr_or_dtype) Check whether an array-like or dtype is of the Interval dtype. api.types.is_numeric_dtype(arr_or_dtype) Check whether the provided array or dtype is of a numeric dtype. api.types.is_object_dtype(arr_or_dtype) Check whether an array-like or dtype is of the object dtype. api.types.is_period_dtype(arr_or_dtype) Check whether an array-like or dtype is of the Period dtype. api.types.is_signed_integer_dtype(arr_or_dtype) Check whether the provided array or dtype is of a signed integer dtype. api.types.is_string_dtype(arr_or_dtype) Check whether the provided array or dtype is of the string dtype. api.types.is_timedelta64_dtype(arr_or_dtype) Check whether an array-like or dtype is of the timedelta64 dtype. api.types.is_timedelta64_ns_dtype(arr_or_dtype) Check whether the provided array or dtype is of the timedelta64[ns] dtype. api.types.is_unsigned_integer_dtype(arr_or_dtype) Check whether the provided array or dtype is of an unsigned integer dtype. api.types.is_sparse(arr) Check whether an array-like is a 1-D pandas sparse array. Iterable introspection# api.types.is_dict_like(obj) Check if the object is dict-like. api.types.is_file_like(obj) Check if the object is a file-like object. api.types.is_list_like Check if the object is list-like. api.types.is_named_tuple(obj) Check if the object is a named tuple. api.types.is_iterator Check if the object is an iterator. Scalar introspection# api.types.is_bool Return True if given object is boolean. api.types.is_categorical(arr) (DEPRECATED) Check whether an array-like is a Categorical instance. api.types.is_complex Return True if given object is complex. api.types.is_float Return True if given object is float. api.types.is_hashable(obj) Return True if hash(obj) will succeed, False otherwise. api.types.is_integer Return True if given object is integer. api.types.is_interval api.types.is_number(obj) Check if the object is a number. api.types.is_re(obj) Check if the object is a regex pattern instance. api.types.is_re_compilable(obj) Check if the object can be compiled into a regex pattern instance. api.types.is_scalar Return True if given object is scalar.
reference/arrays.html
null
pandas.Period.day_of_year
`pandas.Period.day_of_year` Return the day of the year. ``` >>> period = pd.Period("2015-10-23", freq='H') >>> period.day_of_year 296 >>> period = pd.Period("2012-12-31", freq='D') >>> period.day_of_year 366 >>> period = pd.Period("2013-01-01", freq='D') >>> period.day_of_year 1 ```
Period.day_of_year# Return the day of the year. This attribute returns the day of the year on which the particular date occurs. The return value ranges between 1 to 365 for regular years and 1 to 366 for leap years. Returns intThe day of year. See also Period.dayReturn the day of the month. Period.day_of_weekReturn the day of week. PeriodIndex.day_of_yearReturn the day of year of all indexes. Examples >>> period = pd.Period("2015-10-23", freq='H') >>> period.day_of_year 296 >>> period = pd.Period("2012-12-31", freq='D') >>> period.day_of_year 366 >>> period = pd.Period("2013-01-01", freq='D') >>> period.day_of_year 1
reference/api/pandas.Period.day_of_year.html
pandas.io.formats.style.Styler.highlight_between
`pandas.io.formats.style.Styler.highlight_between` Highlight a defined range with a style. ``` >>> df = pd.DataFrame({ ... 'One': [1.2, 1.6, 1.5], ... 'Two': [2.9, 2.1, 2.5], ... 'Three': [3.1, 3.2, 3.8], ... }) >>> df.style.highlight_between(left=2.1, right=2.9) ```
Styler.highlight_between(subset=None, color='yellow', axis=0, left=None, right=None, inclusive='both', props=None)[source]# Highlight a defined range with a style. New in version 1.3.0. Parameters subsetlabel, array-like, IndexSlice, optionalA valid 2d input to DataFrame.loc[<subset>], or, in the case of a 1d input or single key, to DataFrame.loc[:, <subset>] where the columns are prioritised, to limit data to before applying the function. colorstr, default ‘yellow’Background color to use for highlighting. axis{0 or ‘index’, 1 or ‘columns’, None}, default 0If left or right given as sequence, axis along which to apply those boundaries. See examples. leftscalar or datetime-like, or sequence or array-like, default NoneLeft bound for defining the range. rightscalar or datetime-like, or sequence or array-like, default NoneRight bound for defining the range. inclusive{‘both’, ‘neither’, ‘left’, ‘right’}Identify whether bounds are closed or open. propsstr, default NoneCSS properties to use for highlighting. If props is given, color is not used. Returns selfStyler See also Styler.highlight_nullHighlight missing values with a style. Styler.highlight_maxHighlight the maximum with a style. Styler.highlight_minHighlight the minimum with a style. Styler.highlight_quantileHighlight values defined by a quantile with a style. Notes If left is None only the right bound is applied. If right is None only the left bound is applied. If both are None all values are highlighted. axis is only needed if left or right are provided as a sequence or an array-like object for aligning the shapes. If left and right are both scalars then all axis inputs will give the same result. This function only works with compatible dtypes. For example a datetime-like region can only use equivalent datetime-like left and right arguments. Use subset to control regions which have multiple dtypes. Examples Basic usage >>> df = pd.DataFrame({ ... 'One': [1.2, 1.6, 1.5], ... 'Two': [2.9, 2.1, 2.5], ... 'Three': [3.1, 3.2, 3.8], ... }) >>> df.style.highlight_between(left=2.1, right=2.9) Using a range input sequence along an axis, in this case setting a left and right for each column individually >>> df.style.highlight_between(left=[1.4, 2.4, 3.4], right=[1.6, 2.6, 3.6], ... axis=1, color="#fffd75") Using axis=None and providing the left argument as an array that matches the input DataFrame, with a constant right >>> df.style.highlight_between(left=[[2,2,3],[2,2,3],[3,3,3]], right=3.5, ... axis=None, color="#fffd75") Using props instead of default background coloring >>> df.style.highlight_between(left=1.5, right=3.5, ... props='font-weight:bold;color:#e83e8c')
reference/api/pandas.io.formats.style.Styler.highlight_between.html
pandas.tseries.offsets.Easter.__call__
`pandas.tseries.offsets.Easter.__call__` Call self as a function.
Easter.__call__(*args, **kwargs)# Call self as a function.
reference/api/pandas.tseries.offsets.Easter.__call__.html
pandas.Series.notna
`pandas.Series.notna` Detect existing (non-missing) values. ``` >>> df = pd.DataFrame(dict(age=[5, 6, np.NaN], ... born=[pd.NaT, pd.Timestamp('1939-05-27'), ... pd.Timestamp('1940-04-25')], ... name=['Alfred', 'Batman', ''], ... toy=[None, 'Batmobile', 'Joker'])) >>> df age born name toy 0 5.0 NaT Alfred None 1 6.0 1939-05-27 Batman Batmobile 2 NaN 1940-04-25 Joker ```
Series.notna()[source]# Detect existing (non-missing) values. Return a boolean same-sized object indicating if the values are not NA. Non-missing values get mapped to True. Characters such as empty strings '' or numpy.inf are not considered NA values (unless you set pandas.options.mode.use_inf_as_na = True). NA values, such as None or numpy.NaN, get mapped to False values. Returns SeriesMask of bool values for each element in Series that indicates whether an element is not an NA value. See also Series.notnullAlias of notna. Series.isnaBoolean inverse of notna. Series.dropnaOmit axes labels with missing values. notnaTop-level notna. Examples Show which entries in a DataFrame are not NA. >>> df = pd.DataFrame(dict(age=[5, 6, np.NaN], ... born=[pd.NaT, pd.Timestamp('1939-05-27'), ... pd.Timestamp('1940-04-25')], ... name=['Alfred', 'Batman', ''], ... toy=[None, 'Batmobile', 'Joker'])) >>> df age born name toy 0 5.0 NaT Alfred None 1 6.0 1939-05-27 Batman Batmobile 2 NaN 1940-04-25 Joker >>> df.notna() age born name toy 0 True False True False 1 True True True True 2 False True True True Show which entries in a Series are not NA. >>> ser = pd.Series([5, 6, np.NaN]) >>> ser 0 5.0 1 6.0 2 NaN dtype: float64 >>> ser.notna() 0 True 1 True 2 False dtype: bool
reference/api/pandas.Series.notna.html
pandas.Series.plot.line
`pandas.Series.plot.line` Plot Series or DataFrame as lines. ``` >>> s = pd.Series([1, 3, 2]) >>> s.plot.line() <AxesSubplot: ylabel='Density'> ```
Series.plot.line(x=None, y=None, **kwargs)[source]# Plot Series or DataFrame as lines. This function is useful to plot lines using DataFrame’s values as coordinates. Parameters xlabel or position, optionalAllows plotting of one column versus another. If not specified, the index of the DataFrame is used. ylabel or position, optionalAllows plotting of one column versus another. If not specified, all numerical columns are used. colorstr, array-like, or dict, optionalThe color for each of the DataFrame’s columns. Possible values are: A single color string referred to by name, RGB or RGBA code,for instance ‘red’ or ‘#a98d19’. A sequence of color strings referred to by name, RGB or RGBAcode, which will be used for each column recursively. For instance [‘green’,’yellow’] each column’s line will be filled in green or yellow, alternatively. If there is only a single column to be plotted, then only the first color from the color list will be used. A dict of the form {column namecolor}, so that each column will becolored accordingly. For example, if your columns are called a and b, then passing {‘a’: ‘green’, ‘b’: ‘red’} will color lines for column a in green and lines for column b in red. New in version 1.1.0. **kwargsAdditional keyword arguments are documented in DataFrame.plot(). Returns matplotlib.axes.Axes or np.ndarray of themAn ndarray is returned with one matplotlib.axes.Axes per column when subplots=True. See also matplotlib.pyplot.plotPlot y versus x as lines and/or markers. Examples >>> s = pd.Series([1, 3, 2]) >>> s.plot.line() <AxesSubplot: ylabel='Density'> The following example shows the populations for some animals over the years. >>> df = pd.DataFrame({ ... 'pig': [20, 18, 489, 675, 1776], ... 'horse': [4, 25, 281, 600, 1900] ... }, index=[1990, 1997, 2003, 2009, 2014]) >>> lines = df.plot.line() An example with subplots, so an array of axes is returned. >>> axes = df.plot.line(subplots=True) >>> type(axes) <class 'numpy.ndarray'> Let’s repeat the same example, but specifying colors for each column (in this case, for each animal). >>> axes = df.plot.line( ... subplots=True, color={"pig": "pink", "horse": "#742802"} ... ) The following example shows the relationship between both populations. >>> lines = df.plot.line(x='pig', y='horse')
reference/api/pandas.Series.plot.line.html
pandas.api.types.is_categorical_dtype
`pandas.api.types.is_categorical_dtype` Check whether an array-like or dtype is of the Categorical dtype. The array-like or dtype to check. ``` >>> is_categorical_dtype(object) False >>> is_categorical_dtype(CategoricalDtype()) True >>> is_categorical_dtype([1, 2, 3]) False >>> is_categorical_dtype(pd.Categorical([1, 2, 3])) True >>> is_categorical_dtype(pd.CategoricalIndex([1, 2, 3])) True ```
pandas.api.types.is_categorical_dtype(arr_or_dtype)[source]# Check whether an array-like or dtype is of the Categorical dtype. Parameters arr_or_dtypearray-like or dtypeThe array-like or dtype to check. Returns booleanWhether or not the array-like or dtype is of the Categorical dtype. Examples >>> is_categorical_dtype(object) False >>> is_categorical_dtype(CategoricalDtype()) True >>> is_categorical_dtype([1, 2, 3]) False >>> is_categorical_dtype(pd.Categorical([1, 2, 3])) True >>> is_categorical_dtype(pd.CategoricalIndex([1, 2, 3])) True
reference/api/pandas.api.types.is_categorical_dtype.html
Date offsets
Date offsets
DateOffset# DateOffset Standard kind of date increment used for a date range. Properties# DateOffset.freqstr Return a string representing the frequency. DateOffset.kwds Return a dict of extra parameters for the offset. DateOffset.name Return a string representing the base frequency. DateOffset.nanos DateOffset.normalize DateOffset.rule_code DateOffset.n DateOffset.is_month_start Return boolean whether a timestamp occurs on the month start. DateOffset.is_month_end Return boolean whether a timestamp occurs on the month end. Methods# DateOffset.apply DateOffset.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. DateOffset.copy Return a copy of the frequency. DateOffset.isAnchored DateOffset.onOffset DateOffset.is_anchored Return boolean whether the frequency is a unit frequency (n=1). DateOffset.is_on_offset Return boolean whether a timestamp intersects with this frequency. DateOffset.__call__(*args, **kwargs) Call self as a function. DateOffset.is_month_start Return boolean whether a timestamp occurs on the month start. DateOffset.is_month_end Return boolean whether a timestamp occurs on the month end. DateOffset.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. DateOffset.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. DateOffset.is_year_start Return boolean whether a timestamp occurs on the year start. DateOffset.is_year_end Return boolean whether a timestamp occurs on the year end. BusinessDay# BusinessDay DateOffset subclass representing possibly n business days. Alias: BDay alias of pandas._libs.tslibs.offsets.BusinessDay Properties# BusinessDay.freqstr Return a string representing the frequency. BusinessDay.kwds Return a dict of extra parameters for the offset. BusinessDay.name Return a string representing the base frequency. BusinessDay.nanos BusinessDay.normalize BusinessDay.rule_code BusinessDay.n BusinessDay.weekmask BusinessDay.holidays BusinessDay.calendar Methods# BusinessDay.apply BusinessDay.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. BusinessDay.copy Return a copy of the frequency. BusinessDay.isAnchored BusinessDay.onOffset BusinessDay.is_anchored Return boolean whether the frequency is a unit frequency (n=1). BusinessDay.is_on_offset Return boolean whether a timestamp intersects with this frequency. BusinessDay.__call__(*args, **kwargs) Call self as a function. BusinessDay.is_month_start Return boolean whether a timestamp occurs on the month start. BusinessDay.is_month_end Return boolean whether a timestamp occurs on the month end. BusinessDay.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. BusinessDay.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. BusinessDay.is_year_start Return boolean whether a timestamp occurs on the year start. BusinessDay.is_year_end Return boolean whether a timestamp occurs on the year end. BusinessHour# BusinessHour DateOffset subclass representing possibly n business hours. Properties# BusinessHour.freqstr Return a string representing the frequency. BusinessHour.kwds Return a dict of extra parameters for the offset. BusinessHour.name Return a string representing the base frequency. BusinessHour.nanos BusinessHour.normalize BusinessHour.rule_code BusinessHour.n BusinessHour.start BusinessHour.end BusinessHour.weekmask BusinessHour.holidays BusinessHour.calendar Methods# BusinessHour.apply BusinessHour.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. BusinessHour.copy Return a copy of the frequency. BusinessHour.isAnchored BusinessHour.onOffset BusinessHour.is_anchored Return boolean whether the frequency is a unit frequency (n=1). BusinessHour.is_on_offset Return boolean whether a timestamp intersects with this frequency. BusinessHour.__call__(*args, **kwargs) Call self as a function. BusinessHour.is_month_start Return boolean whether a timestamp occurs on the month start. BusinessHour.is_month_end Return boolean whether a timestamp occurs on the month end. BusinessHour.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. BusinessHour.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. BusinessHour.is_year_start Return boolean whether a timestamp occurs on the year start. BusinessHour.is_year_end Return boolean whether a timestamp occurs on the year end. CustomBusinessDay# CustomBusinessDay DateOffset subclass representing custom business days excluding holidays. Alias: CDay alias of pandas._libs.tslibs.offsets.CustomBusinessDay Properties# CustomBusinessDay.freqstr Return a string representing the frequency. CustomBusinessDay.kwds Return a dict of extra parameters for the offset. CustomBusinessDay.name Return a string representing the base frequency. CustomBusinessDay.nanos CustomBusinessDay.normalize CustomBusinessDay.rule_code CustomBusinessDay.n CustomBusinessDay.weekmask CustomBusinessDay.calendar CustomBusinessDay.holidays Methods# CustomBusinessDay.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. CustomBusinessDay.apply CustomBusinessDay.copy Return a copy of the frequency. CustomBusinessDay.isAnchored CustomBusinessDay.onOffset CustomBusinessDay.is_anchored Return boolean whether the frequency is a unit frequency (n=1). CustomBusinessDay.is_on_offset Return boolean whether a timestamp intersects with this frequency. CustomBusinessDay.__call__(*args, **kwargs) Call self as a function. CustomBusinessDay.is_month_start Return boolean whether a timestamp occurs on the month start. CustomBusinessDay.is_month_end Return boolean whether a timestamp occurs on the month end. CustomBusinessDay.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. CustomBusinessDay.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. CustomBusinessDay.is_year_start Return boolean whether a timestamp occurs on the year start. CustomBusinessDay.is_year_end Return boolean whether a timestamp occurs on the year end. CustomBusinessHour# CustomBusinessHour DateOffset subclass representing possibly n custom business days. Properties# CustomBusinessHour.freqstr Return a string representing the frequency. CustomBusinessHour.kwds Return a dict of extra parameters for the offset. CustomBusinessHour.name Return a string representing the base frequency. CustomBusinessHour.nanos CustomBusinessHour.normalize CustomBusinessHour.rule_code CustomBusinessHour.n CustomBusinessHour.weekmask CustomBusinessHour.calendar CustomBusinessHour.holidays CustomBusinessHour.start CustomBusinessHour.end Methods# CustomBusinessHour.apply CustomBusinessHour.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. CustomBusinessHour.copy Return a copy of the frequency. CustomBusinessHour.isAnchored CustomBusinessHour.onOffset CustomBusinessHour.is_anchored Return boolean whether the frequency is a unit frequency (n=1). CustomBusinessHour.is_on_offset Return boolean whether a timestamp intersects with this frequency. CustomBusinessHour.__call__(*args, **kwargs) Call self as a function. CustomBusinessHour.is_month_start Return boolean whether a timestamp occurs on the month start. CustomBusinessHour.is_month_end Return boolean whether a timestamp occurs on the month end. CustomBusinessHour.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. CustomBusinessHour.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. CustomBusinessHour.is_year_start Return boolean whether a timestamp occurs on the year start. CustomBusinessHour.is_year_end Return boolean whether a timestamp occurs on the year end. MonthEnd# MonthEnd DateOffset of one month end. Properties# MonthEnd.freqstr Return a string representing the frequency. MonthEnd.kwds Return a dict of extra parameters for the offset. MonthEnd.name Return a string representing the base frequency. MonthEnd.nanos MonthEnd.normalize MonthEnd.rule_code MonthEnd.n Methods# MonthEnd.apply MonthEnd.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. MonthEnd.copy Return a copy of the frequency. MonthEnd.isAnchored MonthEnd.onOffset MonthEnd.is_anchored Return boolean whether the frequency is a unit frequency (n=1). MonthEnd.is_on_offset Return boolean whether a timestamp intersects with this frequency. MonthEnd.__call__(*args, **kwargs) Call self as a function. MonthEnd.is_month_start Return boolean whether a timestamp occurs on the month start. MonthEnd.is_month_end Return boolean whether a timestamp occurs on the month end. MonthEnd.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. MonthEnd.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. MonthEnd.is_year_start Return boolean whether a timestamp occurs on the year start. MonthEnd.is_year_end Return boolean whether a timestamp occurs on the year end. MonthBegin# MonthBegin DateOffset of one month at beginning. Properties# MonthBegin.freqstr Return a string representing the frequency. MonthBegin.kwds Return a dict of extra parameters for the offset. MonthBegin.name Return a string representing the base frequency. MonthBegin.nanos MonthBegin.normalize MonthBegin.rule_code MonthBegin.n Methods# MonthBegin.apply MonthBegin.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. MonthBegin.copy Return a copy of the frequency. MonthBegin.isAnchored MonthBegin.onOffset MonthBegin.is_anchored Return boolean whether the frequency is a unit frequency (n=1). MonthBegin.is_on_offset Return boolean whether a timestamp intersects with this frequency. MonthBegin.__call__(*args, **kwargs) Call self as a function. MonthBegin.is_month_start Return boolean whether a timestamp occurs on the month start. MonthBegin.is_month_end Return boolean whether a timestamp occurs on the month end. MonthBegin.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. MonthBegin.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. MonthBegin.is_year_start Return boolean whether a timestamp occurs on the year start. MonthBegin.is_year_end Return boolean whether a timestamp occurs on the year end. BusinessMonthEnd# BusinessMonthEnd DateOffset increments between the last business day of the month. Alias: BMonthEnd alias of pandas._libs.tslibs.offsets.BusinessMonthEnd Properties# BusinessMonthEnd.freqstr Return a string representing the frequency. BusinessMonthEnd.kwds Return a dict of extra parameters for the offset. BusinessMonthEnd.name Return a string representing the base frequency. BusinessMonthEnd.nanos BusinessMonthEnd.normalize BusinessMonthEnd.rule_code BusinessMonthEnd.n Methods# BusinessMonthEnd.apply BusinessMonthEnd.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. BusinessMonthEnd.copy Return a copy of the frequency. BusinessMonthEnd.isAnchored BusinessMonthEnd.onOffset BusinessMonthEnd.is_anchored Return boolean whether the frequency is a unit frequency (n=1). BusinessMonthEnd.is_on_offset Return boolean whether a timestamp intersects with this frequency. BusinessMonthEnd.__call__(*args, **kwargs) Call self as a function. BusinessMonthEnd.is_month_start Return boolean whether a timestamp occurs on the month start. BusinessMonthEnd.is_month_end Return boolean whether a timestamp occurs on the month end. BusinessMonthEnd.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. BusinessMonthEnd.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. BusinessMonthEnd.is_year_start Return boolean whether a timestamp occurs on the year start. BusinessMonthEnd.is_year_end Return boolean whether a timestamp occurs on the year end. BusinessMonthBegin# BusinessMonthBegin DateOffset of one month at the first business day. Alias: BMonthBegin alias of pandas._libs.tslibs.offsets.BusinessMonthBegin Properties# BusinessMonthBegin.freqstr Return a string representing the frequency. BusinessMonthBegin.kwds Return a dict of extra parameters for the offset. BusinessMonthBegin.name Return a string representing the base frequency. BusinessMonthBegin.nanos BusinessMonthBegin.normalize BusinessMonthBegin.rule_code BusinessMonthBegin.n Methods# BusinessMonthBegin.apply BusinessMonthBegin.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. BusinessMonthBegin.copy Return a copy of the frequency. BusinessMonthBegin.isAnchored BusinessMonthBegin.onOffset BusinessMonthBegin.is_anchored Return boolean whether the frequency is a unit frequency (n=1). BusinessMonthBegin.is_on_offset Return boolean whether a timestamp intersects with this frequency. BusinessMonthBegin.__call__(*args, **kwargs) Call self as a function. BusinessMonthBegin.is_month_start Return boolean whether a timestamp occurs on the month start. BusinessMonthBegin.is_month_end Return boolean whether a timestamp occurs on the month end. BusinessMonthBegin.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. BusinessMonthBegin.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. BusinessMonthBegin.is_year_start Return boolean whether a timestamp occurs on the year start. BusinessMonthBegin.is_year_end Return boolean whether a timestamp occurs on the year end. CustomBusinessMonthEnd# CustomBusinessMonthEnd Attributes Alias: CBMonthEnd alias of pandas._libs.tslibs.offsets.CustomBusinessMonthEnd Properties# CustomBusinessMonthEnd.freqstr Return a string representing the frequency. CustomBusinessMonthEnd.kwds Return a dict of extra parameters for the offset. CustomBusinessMonthEnd.m_offset CustomBusinessMonthEnd.name Return a string representing the base frequency. CustomBusinessMonthEnd.nanos CustomBusinessMonthEnd.normalize CustomBusinessMonthEnd.rule_code CustomBusinessMonthEnd.n CustomBusinessMonthEnd.weekmask CustomBusinessMonthEnd.calendar CustomBusinessMonthEnd.holidays Methods# CustomBusinessMonthEnd.apply CustomBusinessMonthEnd.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. CustomBusinessMonthEnd.copy Return a copy of the frequency. CustomBusinessMonthEnd.isAnchored CustomBusinessMonthEnd.onOffset CustomBusinessMonthEnd.is_anchored Return boolean whether the frequency is a unit frequency (n=1). CustomBusinessMonthEnd.is_on_offset Return boolean whether a timestamp intersects with this frequency. CustomBusinessMonthEnd.__call__(*args, **kwargs) Call self as a function. CustomBusinessMonthEnd.is_month_start Return boolean whether a timestamp occurs on the month start. CustomBusinessMonthEnd.is_month_end Return boolean whether a timestamp occurs on the month end. CustomBusinessMonthEnd.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. CustomBusinessMonthEnd.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. CustomBusinessMonthEnd.is_year_start Return boolean whether a timestamp occurs on the year start. CustomBusinessMonthEnd.is_year_end Return boolean whether a timestamp occurs on the year end. CustomBusinessMonthBegin# CustomBusinessMonthBegin Attributes Alias: CBMonthBegin alias of pandas._libs.tslibs.offsets.CustomBusinessMonthBegin Properties# CustomBusinessMonthBegin.freqstr Return a string representing the frequency. CustomBusinessMonthBegin.kwds Return a dict of extra parameters for the offset. CustomBusinessMonthBegin.m_offset CustomBusinessMonthBegin.name Return a string representing the base frequency. CustomBusinessMonthBegin.nanos CustomBusinessMonthBegin.normalize CustomBusinessMonthBegin.rule_code CustomBusinessMonthBegin.n CustomBusinessMonthBegin.weekmask CustomBusinessMonthBegin.calendar CustomBusinessMonthBegin.holidays Methods# CustomBusinessMonthBegin.apply CustomBusinessMonthBegin.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. CustomBusinessMonthBegin.copy Return a copy of the frequency. CustomBusinessMonthBegin.isAnchored CustomBusinessMonthBegin.onOffset CustomBusinessMonthBegin.is_anchored Return boolean whether the frequency is a unit frequency (n=1). CustomBusinessMonthBegin.is_on_offset Return boolean whether a timestamp intersects with this frequency. CustomBusinessMonthBegin.__call__(*args, ...) Call self as a function. CustomBusinessMonthBegin.is_month_start Return boolean whether a timestamp occurs on the month start. CustomBusinessMonthBegin.is_month_end Return boolean whether a timestamp occurs on the month end. CustomBusinessMonthBegin.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. CustomBusinessMonthBegin.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. CustomBusinessMonthBegin.is_year_start Return boolean whether a timestamp occurs on the year start. CustomBusinessMonthBegin.is_year_end Return boolean whether a timestamp occurs on the year end. SemiMonthEnd# SemiMonthEnd Two DateOffset's per month repeating on the last day of the month & day_of_month. Properties# SemiMonthEnd.freqstr Return a string representing the frequency. SemiMonthEnd.kwds Return a dict of extra parameters for the offset. SemiMonthEnd.name Return a string representing the base frequency. SemiMonthEnd.nanos SemiMonthEnd.normalize SemiMonthEnd.rule_code SemiMonthEnd.n SemiMonthEnd.day_of_month Methods# SemiMonthEnd.apply SemiMonthEnd.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. SemiMonthEnd.copy Return a copy of the frequency. SemiMonthEnd.isAnchored SemiMonthEnd.onOffset SemiMonthEnd.is_anchored Return boolean whether the frequency is a unit frequency (n=1). SemiMonthEnd.is_on_offset Return boolean whether a timestamp intersects with this frequency. SemiMonthEnd.__call__(*args, **kwargs) Call self as a function. SemiMonthEnd.is_month_start Return boolean whether a timestamp occurs on the month start. SemiMonthEnd.is_month_end Return boolean whether a timestamp occurs on the month end. SemiMonthEnd.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. SemiMonthEnd.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. SemiMonthEnd.is_year_start Return boolean whether a timestamp occurs on the year start. SemiMonthEnd.is_year_end Return boolean whether a timestamp occurs on the year end. SemiMonthBegin# SemiMonthBegin Two DateOffset's per month repeating on the first day of the month & day_of_month. Properties# SemiMonthBegin.freqstr Return a string representing the frequency. SemiMonthBegin.kwds Return a dict of extra parameters for the offset. SemiMonthBegin.name Return a string representing the base frequency. SemiMonthBegin.nanos SemiMonthBegin.normalize SemiMonthBegin.rule_code SemiMonthBegin.n SemiMonthBegin.day_of_month Methods# SemiMonthBegin.apply SemiMonthBegin.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. SemiMonthBegin.copy Return a copy of the frequency. SemiMonthBegin.isAnchored SemiMonthBegin.onOffset SemiMonthBegin.is_anchored Return boolean whether the frequency is a unit frequency (n=1). SemiMonthBegin.is_on_offset Return boolean whether a timestamp intersects with this frequency. SemiMonthBegin.__call__(*args, **kwargs) Call self as a function. SemiMonthBegin.is_month_start Return boolean whether a timestamp occurs on the month start. SemiMonthBegin.is_month_end Return boolean whether a timestamp occurs on the month end. SemiMonthBegin.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. SemiMonthBegin.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. SemiMonthBegin.is_year_start Return boolean whether a timestamp occurs on the year start. SemiMonthBegin.is_year_end Return boolean whether a timestamp occurs on the year end. Week# Week Weekly offset. Properties# Week.freqstr Return a string representing the frequency. Week.kwds Return a dict of extra parameters for the offset. Week.name Return a string representing the base frequency. Week.nanos Week.normalize Week.rule_code Week.n Week.weekday Methods# Week.apply Week.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. Week.copy Return a copy of the frequency. Week.isAnchored Week.onOffset Week.is_anchored Return boolean whether the frequency is a unit frequency (n=1). Week.is_on_offset Return boolean whether a timestamp intersects with this frequency. Week.__call__(*args, **kwargs) Call self as a function. Week.is_month_start Return boolean whether a timestamp occurs on the month start. Week.is_month_end Return boolean whether a timestamp occurs on the month end. Week.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. Week.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. Week.is_year_start Return boolean whether a timestamp occurs on the year start. Week.is_year_end Return boolean whether a timestamp occurs on the year end. WeekOfMonth# WeekOfMonth Describes monthly dates like "the Tuesday of the 2nd week of each month". Properties# WeekOfMonth.freqstr Return a string representing the frequency. WeekOfMonth.kwds Return a dict of extra parameters for the offset. WeekOfMonth.name Return a string representing the base frequency. WeekOfMonth.nanos WeekOfMonth.normalize WeekOfMonth.rule_code WeekOfMonth.n WeekOfMonth.week Methods# WeekOfMonth.apply WeekOfMonth.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. WeekOfMonth.copy Return a copy of the frequency. WeekOfMonth.isAnchored WeekOfMonth.onOffset WeekOfMonth.is_anchored Return boolean whether the frequency is a unit frequency (n=1). WeekOfMonth.is_on_offset Return boolean whether a timestamp intersects with this frequency. WeekOfMonth.__call__(*args, **kwargs) Call self as a function. WeekOfMonth.weekday WeekOfMonth.is_month_start Return boolean whether a timestamp occurs on the month start. WeekOfMonth.is_month_end Return boolean whether a timestamp occurs on the month end. WeekOfMonth.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. WeekOfMonth.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. WeekOfMonth.is_year_start Return boolean whether a timestamp occurs on the year start. WeekOfMonth.is_year_end Return boolean whether a timestamp occurs on the year end. LastWeekOfMonth# LastWeekOfMonth Describes monthly dates in last week of month. Properties# LastWeekOfMonth.freqstr Return a string representing the frequency. LastWeekOfMonth.kwds Return a dict of extra parameters for the offset. LastWeekOfMonth.name Return a string representing the base frequency. LastWeekOfMonth.nanos LastWeekOfMonth.normalize LastWeekOfMonth.rule_code LastWeekOfMonth.n LastWeekOfMonth.weekday LastWeekOfMonth.week Methods# LastWeekOfMonth.apply LastWeekOfMonth.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. LastWeekOfMonth.copy Return a copy of the frequency. LastWeekOfMonth.isAnchored LastWeekOfMonth.onOffset LastWeekOfMonth.is_anchored Return boolean whether the frequency is a unit frequency (n=1). LastWeekOfMonth.is_on_offset Return boolean whether a timestamp intersects with this frequency. LastWeekOfMonth.__call__(*args, **kwargs) Call self as a function. LastWeekOfMonth.is_month_start Return boolean whether a timestamp occurs on the month start. LastWeekOfMonth.is_month_end Return boolean whether a timestamp occurs on the month end. LastWeekOfMonth.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. LastWeekOfMonth.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. LastWeekOfMonth.is_year_start Return boolean whether a timestamp occurs on the year start. LastWeekOfMonth.is_year_end Return boolean whether a timestamp occurs on the year end. BQuarterEnd# BQuarterEnd DateOffset increments between the last business day of each Quarter. Properties# BQuarterEnd.freqstr Return a string representing the frequency. BQuarterEnd.kwds Return a dict of extra parameters for the offset. BQuarterEnd.name Return a string representing the base frequency. BQuarterEnd.nanos BQuarterEnd.normalize BQuarterEnd.rule_code BQuarterEnd.n BQuarterEnd.startingMonth Methods# BQuarterEnd.apply BQuarterEnd.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. BQuarterEnd.copy Return a copy of the frequency. BQuarterEnd.isAnchored BQuarterEnd.onOffset BQuarterEnd.is_anchored Return boolean whether the frequency is a unit frequency (n=1). BQuarterEnd.is_on_offset Return boolean whether a timestamp intersects with this frequency. BQuarterEnd.__call__(*args, **kwargs) Call self as a function. BQuarterEnd.is_month_start Return boolean whether a timestamp occurs on the month start. BQuarterEnd.is_month_end Return boolean whether a timestamp occurs on the month end. BQuarterEnd.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. BQuarterEnd.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. BQuarterEnd.is_year_start Return boolean whether a timestamp occurs on the year start. BQuarterEnd.is_year_end Return boolean whether a timestamp occurs on the year end. BQuarterBegin# BQuarterBegin DateOffset increments between the first business day of each Quarter. Properties# BQuarterBegin.freqstr Return a string representing the frequency. BQuarterBegin.kwds Return a dict of extra parameters for the offset. BQuarterBegin.name Return a string representing the base frequency. BQuarterBegin.nanos BQuarterBegin.normalize BQuarterBegin.rule_code BQuarterBegin.n BQuarterBegin.startingMonth Methods# BQuarterBegin.apply BQuarterBegin.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. BQuarterBegin.copy Return a copy of the frequency. BQuarterBegin.isAnchored BQuarterBegin.onOffset BQuarterBegin.is_anchored Return boolean whether the frequency is a unit frequency (n=1). BQuarterBegin.is_on_offset Return boolean whether a timestamp intersects with this frequency. BQuarterBegin.__call__(*args, **kwargs) Call self as a function. BQuarterBegin.is_month_start Return boolean whether a timestamp occurs on the month start. BQuarterBegin.is_month_end Return boolean whether a timestamp occurs on the month end. BQuarterBegin.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. BQuarterBegin.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. BQuarterBegin.is_year_start Return boolean whether a timestamp occurs on the year start. BQuarterBegin.is_year_end Return boolean whether a timestamp occurs on the year end. QuarterEnd# QuarterEnd DateOffset increments between Quarter end dates. Properties# QuarterEnd.freqstr Return a string representing the frequency. QuarterEnd.kwds Return a dict of extra parameters for the offset. QuarterEnd.name Return a string representing the base frequency. QuarterEnd.nanos QuarterEnd.normalize QuarterEnd.rule_code QuarterEnd.n QuarterEnd.startingMonth Methods# QuarterEnd.apply QuarterEnd.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. QuarterEnd.copy Return a copy of the frequency. QuarterEnd.isAnchored QuarterEnd.onOffset QuarterEnd.is_anchored Return boolean whether the frequency is a unit frequency (n=1). QuarterEnd.is_on_offset Return boolean whether a timestamp intersects with this frequency. QuarterEnd.__call__(*args, **kwargs) Call self as a function. QuarterEnd.is_month_start Return boolean whether a timestamp occurs on the month start. QuarterEnd.is_month_end Return boolean whether a timestamp occurs on the month end. QuarterEnd.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. QuarterEnd.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. QuarterEnd.is_year_start Return boolean whether a timestamp occurs on the year start. QuarterEnd.is_year_end Return boolean whether a timestamp occurs on the year end. QuarterBegin# QuarterBegin DateOffset increments between Quarter start dates. Properties# QuarterBegin.freqstr Return a string representing the frequency. QuarterBegin.kwds Return a dict of extra parameters for the offset. QuarterBegin.name Return a string representing the base frequency. QuarterBegin.nanos QuarterBegin.normalize QuarterBegin.rule_code QuarterBegin.n QuarterBegin.startingMonth Methods# QuarterBegin.apply QuarterBegin.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. QuarterBegin.copy Return a copy of the frequency. QuarterBegin.isAnchored QuarterBegin.onOffset QuarterBegin.is_anchored Return boolean whether the frequency is a unit frequency (n=1). QuarterBegin.is_on_offset Return boolean whether a timestamp intersects with this frequency. QuarterBegin.__call__(*args, **kwargs) Call self as a function. QuarterBegin.is_month_start Return boolean whether a timestamp occurs on the month start. QuarterBegin.is_month_end Return boolean whether a timestamp occurs on the month end. QuarterBegin.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. QuarterBegin.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. QuarterBegin.is_year_start Return boolean whether a timestamp occurs on the year start. QuarterBegin.is_year_end Return boolean whether a timestamp occurs on the year end. BYearEnd# BYearEnd DateOffset increments between the last business day of the year. Properties# BYearEnd.freqstr Return a string representing the frequency. BYearEnd.kwds Return a dict of extra parameters for the offset. BYearEnd.name Return a string representing the base frequency. BYearEnd.nanos BYearEnd.normalize BYearEnd.rule_code BYearEnd.n BYearEnd.month Methods# BYearEnd.apply BYearEnd.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. BYearEnd.copy Return a copy of the frequency. BYearEnd.isAnchored BYearEnd.onOffset BYearEnd.is_anchored Return boolean whether the frequency is a unit frequency (n=1). BYearEnd.is_on_offset Return boolean whether a timestamp intersects with this frequency. BYearEnd.__call__(*args, **kwargs) Call self as a function. BYearEnd.is_month_start Return boolean whether a timestamp occurs on the month start. BYearEnd.is_month_end Return boolean whether a timestamp occurs on the month end. BYearEnd.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. BYearEnd.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. BYearEnd.is_year_start Return boolean whether a timestamp occurs on the year start. BYearEnd.is_year_end Return boolean whether a timestamp occurs on the year end. BYearBegin# BYearBegin DateOffset increments between the first business day of the year. Properties# BYearBegin.freqstr Return a string representing the frequency. BYearBegin.kwds Return a dict of extra parameters for the offset. BYearBegin.name Return a string representing the base frequency. BYearBegin.nanos BYearBegin.normalize BYearBegin.rule_code BYearBegin.n BYearBegin.month Methods# BYearBegin.apply BYearBegin.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. BYearBegin.copy Return a copy of the frequency. BYearBegin.isAnchored BYearBegin.onOffset BYearBegin.is_anchored Return boolean whether the frequency is a unit frequency (n=1). BYearBegin.is_on_offset Return boolean whether a timestamp intersects with this frequency. BYearBegin.__call__(*args, **kwargs) Call self as a function. BYearBegin.is_month_start Return boolean whether a timestamp occurs on the month start. BYearBegin.is_month_end Return boolean whether a timestamp occurs on the month end. BYearBegin.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. BYearBegin.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. BYearBegin.is_year_start Return boolean whether a timestamp occurs on the year start. BYearBegin.is_year_end Return boolean whether a timestamp occurs on the year end. YearEnd# YearEnd DateOffset increments between calendar year ends. Properties# YearEnd.freqstr Return a string representing the frequency. YearEnd.kwds Return a dict of extra parameters for the offset. YearEnd.name Return a string representing the base frequency. YearEnd.nanos YearEnd.normalize YearEnd.rule_code YearEnd.n YearEnd.month Methods# YearEnd.apply YearEnd.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. YearEnd.copy Return a copy of the frequency. YearEnd.isAnchored YearEnd.onOffset YearEnd.is_anchored Return boolean whether the frequency is a unit frequency (n=1). YearEnd.is_on_offset Return boolean whether a timestamp intersects with this frequency. YearEnd.__call__(*args, **kwargs) Call self as a function. YearEnd.is_month_start Return boolean whether a timestamp occurs on the month start. YearEnd.is_month_end Return boolean whether a timestamp occurs on the month end. YearEnd.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. YearEnd.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. YearEnd.is_year_start Return boolean whether a timestamp occurs on the year start. YearEnd.is_year_end Return boolean whether a timestamp occurs on the year end. YearBegin# YearBegin DateOffset increments between calendar year begin dates. Properties# YearBegin.freqstr Return a string representing the frequency. YearBegin.kwds Return a dict of extra parameters for the offset. YearBegin.name Return a string representing the base frequency. YearBegin.nanos YearBegin.normalize YearBegin.rule_code YearBegin.n YearBegin.month Methods# YearBegin.apply YearBegin.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. YearBegin.copy Return a copy of the frequency. YearBegin.isAnchored YearBegin.onOffset YearBegin.is_anchored Return boolean whether the frequency is a unit frequency (n=1). YearBegin.is_on_offset Return boolean whether a timestamp intersects with this frequency. YearBegin.__call__(*args, **kwargs) Call self as a function. YearBegin.is_month_start Return boolean whether a timestamp occurs on the month start. YearBegin.is_month_end Return boolean whether a timestamp occurs on the month end. YearBegin.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. YearBegin.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. YearBegin.is_year_start Return boolean whether a timestamp occurs on the year start. YearBegin.is_year_end Return boolean whether a timestamp occurs on the year end. FY5253# FY5253 Describes 52-53 week fiscal year. Properties# FY5253.freqstr Return a string representing the frequency. FY5253.kwds Return a dict of extra parameters for the offset. FY5253.name Return a string representing the base frequency. FY5253.nanos FY5253.normalize FY5253.rule_code FY5253.n FY5253.startingMonth FY5253.variation FY5253.weekday Methods# FY5253.apply FY5253.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. FY5253.copy Return a copy of the frequency. FY5253.get_rule_code_suffix FY5253.get_year_end FY5253.isAnchored FY5253.onOffset FY5253.is_anchored Return boolean whether the frequency is a unit frequency (n=1). FY5253.is_on_offset Return boolean whether a timestamp intersects with this frequency. FY5253.__call__(*args, **kwargs) Call self as a function. FY5253.is_month_start Return boolean whether a timestamp occurs on the month start. FY5253.is_month_end Return boolean whether a timestamp occurs on the month end. FY5253.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. FY5253.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. FY5253.is_year_start Return boolean whether a timestamp occurs on the year start. FY5253.is_year_end Return boolean whether a timestamp occurs on the year end. FY5253Quarter# FY5253Quarter DateOffset increments between business quarter dates for 52-53 week fiscal year. Properties# FY5253Quarter.freqstr Return a string representing the frequency. FY5253Quarter.kwds Return a dict of extra parameters for the offset. FY5253Quarter.name Return a string representing the base frequency. FY5253Quarter.nanos FY5253Quarter.normalize FY5253Quarter.rule_code FY5253Quarter.n FY5253Quarter.qtr_with_extra_week FY5253Quarter.startingMonth FY5253Quarter.variation FY5253Quarter.weekday Methods# FY5253Quarter.apply FY5253Quarter.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. FY5253Quarter.copy Return a copy of the frequency. FY5253Quarter.get_rule_code_suffix FY5253Quarter.get_weeks FY5253Quarter.isAnchored FY5253Quarter.onOffset FY5253Quarter.is_anchored Return boolean whether the frequency is a unit frequency (n=1). FY5253Quarter.is_on_offset Return boolean whether a timestamp intersects with this frequency. FY5253Quarter.year_has_extra_week FY5253Quarter.__call__(*args, **kwargs) Call self as a function. FY5253Quarter.is_month_start Return boolean whether a timestamp occurs on the month start. FY5253Quarter.is_month_end Return boolean whether a timestamp occurs on the month end. FY5253Quarter.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. FY5253Quarter.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. FY5253Quarter.is_year_start Return boolean whether a timestamp occurs on the year start. FY5253Quarter.is_year_end Return boolean whether a timestamp occurs on the year end. Easter# Easter DateOffset for the Easter holiday using logic defined in dateutil. Properties# Easter.freqstr Return a string representing the frequency. Easter.kwds Return a dict of extra parameters for the offset. Easter.name Return a string representing the base frequency. Easter.nanos Easter.normalize Easter.rule_code Easter.n Methods# Easter.apply Easter.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. Easter.copy Return a copy of the frequency. Easter.isAnchored Easter.onOffset Easter.is_anchored Return boolean whether the frequency is a unit frequency (n=1). Easter.is_on_offset Return boolean whether a timestamp intersects with this frequency. Easter.__call__(*args, **kwargs) Call self as a function. Easter.is_month_start Return boolean whether a timestamp occurs on the month start. Easter.is_month_end Return boolean whether a timestamp occurs on the month end. Easter.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. Easter.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. Easter.is_year_start Return boolean whether a timestamp occurs on the year start. Easter.is_year_end Return boolean whether a timestamp occurs on the year end. Tick# Tick Attributes Properties# Tick.delta Tick.freqstr Return a string representing the frequency. Tick.kwds Return a dict of extra parameters for the offset. Tick.name Return a string representing the base frequency. Tick.nanos Return an integer of the total number of nanoseconds. Tick.normalize Tick.rule_code Tick.n Methods# Tick.copy Return a copy of the frequency. Tick.isAnchored Tick.onOffset Tick.is_anchored Return boolean whether the frequency is a unit frequency (n=1). Tick.is_on_offset Return boolean whether a timestamp intersects with this frequency. Tick.__call__(*args, **kwargs) Call self as a function. Tick.apply Tick.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. Tick.is_month_start Return boolean whether a timestamp occurs on the month start. Tick.is_month_end Return boolean whether a timestamp occurs on the month end. Tick.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. Tick.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. Tick.is_year_start Return boolean whether a timestamp occurs on the year start. Tick.is_year_end Return boolean whether a timestamp occurs on the year end. Day# Day Attributes Properties# Day.delta Day.freqstr Return a string representing the frequency. Day.kwds Return a dict of extra parameters for the offset. Day.name Return a string representing the base frequency. Day.nanos Return an integer of the total number of nanoseconds. Day.normalize Day.rule_code Day.n Methods# Day.copy Return a copy of the frequency. Day.isAnchored Day.onOffset Day.is_anchored Return boolean whether the frequency is a unit frequency (n=1). Day.is_on_offset Return boolean whether a timestamp intersects with this frequency. Day.__call__(*args, **kwargs) Call self as a function. Day.apply Day.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. Day.is_month_start Return boolean whether a timestamp occurs on the month start. Day.is_month_end Return boolean whether a timestamp occurs on the month end. Day.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. Day.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. Day.is_year_start Return boolean whether a timestamp occurs on the year start. Day.is_year_end Return boolean whether a timestamp occurs on the year end. Hour# Hour Attributes Properties# Hour.delta Hour.freqstr Return a string representing the frequency. Hour.kwds Return a dict of extra parameters for the offset. Hour.name Return a string representing the base frequency. Hour.nanos Return an integer of the total number of nanoseconds. Hour.normalize Hour.rule_code Hour.n Methods# Hour.copy Return a copy of the frequency. Hour.isAnchored Hour.onOffset Hour.is_anchored Return boolean whether the frequency is a unit frequency (n=1). Hour.is_on_offset Return boolean whether a timestamp intersects with this frequency. Hour.__call__(*args, **kwargs) Call self as a function. Hour.apply Hour.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. Hour.is_month_start Return boolean whether a timestamp occurs on the month start. Hour.is_month_end Return boolean whether a timestamp occurs on the month end. Hour.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. Hour.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. Hour.is_year_start Return boolean whether a timestamp occurs on the year start. Hour.is_year_end Return boolean whether a timestamp occurs on the year end. Minute# Minute Attributes Properties# Minute.delta Minute.freqstr Return a string representing the frequency. Minute.kwds Return a dict of extra parameters for the offset. Minute.name Return a string representing the base frequency. Minute.nanos Return an integer of the total number of nanoseconds. Minute.normalize Minute.rule_code Minute.n Methods# Minute.copy Return a copy of the frequency. Minute.isAnchored Minute.onOffset Minute.is_anchored Return boolean whether the frequency is a unit frequency (n=1). Minute.is_on_offset Return boolean whether a timestamp intersects with this frequency. Minute.__call__(*args, **kwargs) Call self as a function. Minute.apply Minute.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. Minute.is_month_start Return boolean whether a timestamp occurs on the month start. Minute.is_month_end Return boolean whether a timestamp occurs on the month end. Minute.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. Minute.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. Minute.is_year_start Return boolean whether a timestamp occurs on the year start. Minute.is_year_end Return boolean whether a timestamp occurs on the year end. Second# Second Attributes Properties# Second.delta Second.freqstr Return a string representing the frequency. Second.kwds Return a dict of extra parameters for the offset. Second.name Return a string representing the base frequency. Second.nanos Return an integer of the total number of nanoseconds. Second.normalize Second.rule_code Second.n Methods# Second.copy Return a copy of the frequency. Second.isAnchored Second.onOffset Second.is_anchored Return boolean whether the frequency is a unit frequency (n=1). Second.is_on_offset Return boolean whether a timestamp intersects with this frequency. Second.__call__(*args, **kwargs) Call self as a function. Second.apply Second.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. Second.is_month_start Return boolean whether a timestamp occurs on the month start. Second.is_month_end Return boolean whether a timestamp occurs on the month end. Second.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. Second.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. Second.is_year_start Return boolean whether a timestamp occurs on the year start. Second.is_year_end Return boolean whether a timestamp occurs on the year end. Milli# Milli Attributes Properties# Milli.delta Milli.freqstr Return a string representing the frequency. Milli.kwds Return a dict of extra parameters for the offset. Milli.name Return a string representing the base frequency. Milli.nanos Return an integer of the total number of nanoseconds. Milli.normalize Milli.rule_code Milli.n Methods# Milli.copy Return a copy of the frequency. Milli.isAnchored Milli.onOffset Milli.is_anchored Return boolean whether the frequency is a unit frequency (n=1). Milli.is_on_offset Return boolean whether a timestamp intersects with this frequency. Milli.__call__(*args, **kwargs) Call self as a function. Milli.apply Milli.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. Milli.is_month_start Return boolean whether a timestamp occurs on the month start. Milli.is_month_end Return boolean whether a timestamp occurs on the month end. Milli.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. Milli.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. Milli.is_year_start Return boolean whether a timestamp occurs on the year start. Milli.is_year_end Return boolean whether a timestamp occurs on the year end. Micro# Micro Attributes Properties# Micro.delta Micro.freqstr Return a string representing the frequency. Micro.kwds Return a dict of extra parameters for the offset. Micro.name Return a string representing the base frequency. Micro.nanos Return an integer of the total number of nanoseconds. Micro.normalize Micro.rule_code Micro.n Methods# Micro.copy Return a copy of the frequency. Micro.isAnchored Micro.onOffset Micro.is_anchored Return boolean whether the frequency is a unit frequency (n=1). Micro.is_on_offset Return boolean whether a timestamp intersects with this frequency. Micro.__call__(*args, **kwargs) Call self as a function. Micro.apply Micro.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. Micro.is_month_start Return boolean whether a timestamp occurs on the month start. Micro.is_month_end Return boolean whether a timestamp occurs on the month end. Micro.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. Micro.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. Micro.is_year_start Return boolean whether a timestamp occurs on the year start. Micro.is_year_end Return boolean whether a timestamp occurs on the year end. Nano# Nano Attributes Properties# Nano.delta Nano.freqstr Return a string representing the frequency. Nano.kwds Return a dict of extra parameters for the offset. Nano.name Return a string representing the base frequency. Nano.nanos Return an integer of the total number of nanoseconds. Nano.normalize Nano.rule_code Nano.n Methods# Nano.copy Return a copy of the frequency. Nano.isAnchored Nano.onOffset Nano.is_anchored Return boolean whether the frequency is a unit frequency (n=1). Nano.is_on_offset Return boolean whether a timestamp intersects with this frequency. Nano.__call__(*args, **kwargs) Call self as a function. Nano.apply Nano.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. Nano.is_month_start Return boolean whether a timestamp occurs on the month start. Nano.is_month_end Return boolean whether a timestamp occurs on the month end. Nano.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. Nano.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. Nano.is_year_start Return boolean whether a timestamp occurs on the year start. Nano.is_year_end Return boolean whether a timestamp occurs on the year end. Frequencies# to_offset Return DateOffset object from string or datetime.timedelta object.
reference/offset_frequency.html
pandas.Index.argsort
`pandas.Index.argsort` Return the integer indices that would sort the index. ``` >>> idx = pd.Index(['b', 'a', 'd', 'c']) >>> idx Index(['b', 'a', 'd', 'c'], dtype='object') ```
Index.argsort(*args, **kwargs)[source]# Return the integer indices that would sort the index. Parameters *argsPassed to numpy.ndarray.argsort. **kwargsPassed to numpy.ndarray.argsort. Returns np.ndarray[np.intp]Integer indices that would sort the index if used as an indexer. See also numpy.argsortSimilar method for NumPy arrays. Index.sort_valuesReturn sorted copy of Index. Examples >>> idx = pd.Index(['b', 'a', 'd', 'c']) >>> idx Index(['b', 'a', 'd', 'c'], dtype='object') >>> order = idx.argsort() >>> order array([1, 0, 3, 2]) >>> idx[order] Index(['a', 'b', 'c', 'd'], dtype='object')
reference/api/pandas.Index.argsort.html
pandas.Period.month
`pandas.Period.month` Return the month this Period falls on.
Period.month# Return the month this Period falls on.
reference/api/pandas.Period.month.html
pandas.tseries.offsets.BusinessHour.is_quarter_start
`pandas.tseries.offsets.BusinessHour.is_quarter_start` Return boolean whether a timestamp occurs on the quarter start. ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_quarter_start(ts) True ```
BusinessHour.is_quarter_start()# Return boolean whether a timestamp occurs on the quarter start. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_quarter_start(ts) True
reference/api/pandas.tseries.offsets.BusinessHour.is_quarter_start.html
pandas.Series.cat.rename_categories
`pandas.Series.cat.rename_categories` Rename categories. ``` >>> c = pd.Categorical(['a', 'a', 'b']) >>> c.rename_categories([0, 1]) [0, 0, 1] Categories (2, int64): [0, 1] ```
Series.cat.rename_categories(*args, **kwargs)[source]# Rename categories. Parameters new_categorieslist-like, dict-like or callableNew categories which will replace old categories. list-like: all items must be unique and the number of items in the new categories must match the existing number of categories. dict-like: specifies a mapping from old categories to new. Categories not contained in the mapping are passed through and extra categories in the mapping are ignored. callable : a callable that is called on all items in the old categories and whose return values comprise the new categories. inplacebool, default FalseWhether or not to rename the categories inplace or return a copy of this categorical with renamed categories. Deprecated since version 1.3.0. Returns catCategorical or NoneCategorical with removed categories or None if inplace=True. Raises ValueErrorIf new categories are list-like and do not have the same number of items than the current categories or do not validate as categories See also reorder_categoriesReorder categories. add_categoriesAdd new categories. remove_categoriesRemove the specified categories. remove_unused_categoriesRemove categories which are not used. set_categoriesSet the categories to the specified ones. Examples >>> c = pd.Categorical(['a', 'a', 'b']) >>> c.rename_categories([0, 1]) [0, 0, 1] Categories (2, int64): [0, 1] For dict-like new_categories, extra keys are ignored and categories not in the dictionary are passed through >>> c.rename_categories({'a': 'A', 'c': 'C'}) ['A', 'A', 'b'] Categories (2, object): ['A', 'b'] You may also provide a callable to create the new categories >>> c.rename_categories(lambda x: x.upper()) ['A', 'A', 'B'] Categories (2, object): ['A', 'B']
reference/api/pandas.Series.cat.rename_categories.html
pandas.io.formats.style.Styler.apply_index
`pandas.io.formats.style.Styler.apply_index` Apply a CSS-styling function to the index or column headers, level-wise. Updates the HTML representation with the result. ``` >>> df = pd.DataFrame([[1,2], [3,4]], index=["A", "B"]) >>> def color_b(s): ... return np.where(s == "B", "background-color: yellow;", "") >>> df.style.apply_index(color_b) ```
Styler.apply_index(func, axis=0, level=None, **kwargs)[source]# Apply a CSS-styling function to the index or column headers, level-wise. Updates the HTML representation with the result. New in version 1.4.0. Parameters funcfunctionfunc should take a Series and return a string array of the same length. axis{0, 1, “index”, “columns”}The headers over which to apply the function. levelint, str, list, optionalIf index is MultiIndex the level(s) over which to apply the function. **kwargsdictPass along to func. Returns selfStyler See also Styler.applymap_indexApply a CSS-styling function to headers elementwise. Styler.applyApply a CSS-styling function column-wise, row-wise, or table-wise. Styler.applymapApply a CSS-styling function elementwise. Notes Each input to func will be the index as a Series, if an Index, or a level of a MultiIndex. The output of func should be an identically sized array of CSS styles as strings, in the format ‘attribute: value; attribute2: value2; …’ or, if nothing is to be applied to that element, an empty string or None. Examples Basic usage to conditionally highlight values in the index. >>> df = pd.DataFrame([[1,2], [3,4]], index=["A", "B"]) >>> def color_b(s): ... return np.where(s == "B", "background-color: yellow;", "") >>> df.style.apply_index(color_b) Selectively applying to specific levels of MultiIndex columns. >>> midx = pd.MultiIndex.from_product([['ix', 'jy'], [0, 1], ['x3', 'z4']]) >>> df = pd.DataFrame([np.arange(8)], columns=midx) >>> def highlight_x(s): ... return ["background-color: yellow;" if "x" in v else "" for v in s] >>> df.style.apply_index(highlight_x, axis="columns", level=[0, 2]) ...
reference/api/pandas.io.formats.style.Styler.apply_index.html
pandas.tseries.offsets.Second.is_year_end
`pandas.tseries.offsets.Second.is_year_end` Return boolean whether a timestamp occurs on the year end. ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_year_end(ts) False ```
Second.is_year_end()# Return boolean whether a timestamp occurs on the year end. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_year_end(ts) False
reference/api/pandas.tseries.offsets.Second.is_year_end.html
pandas.io.formats.style.Styler.render
`pandas.io.formats.style.Styler.render` Render the Styler including all applied styles to HTML.
Styler.render(sparse_index=None, sparse_columns=None, **kwargs)[source]# Render the Styler including all applied styles to HTML. Deprecated since version 1.4.0. Parameters sparse_indexbool, optionalWhether to sparsify the display of a hierarchical index. Setting to False will display each explicit level element in a hierarchical key for each row. Defaults to pandas.options.styler.sparse.index value. sparse_columnsbool, optionalWhether to sparsify the display of a hierarchical index. Setting to False will display each explicit level element in a hierarchical key for each row. Defaults to pandas.options.styler.sparse.columns value. **kwargsAny additional keyword arguments are passed through to self.template.render. This is useful when you need to provide additional variables for a custom template. Returns renderedstrThe rendered HTML. Notes This method is deprecated in favour of Styler.to_html. Styler objects have defined the _repr_html_ method which automatically calls self.to_html() when it’s the last item in a Notebook cell. When calling Styler.render() directly, wrap the result in IPython.display.HTML to view the rendered HTML in the notebook. Pandas uses the following keys in render. Arguments passed in **kwargs take precedence, so think carefully if you want to override them: head cellstyle body uuid table_styles caption table_attributes
reference/api/pandas.io.formats.style.Styler.render.html
pandas.tseries.offsets.LastWeekOfMonth.freqstr
`pandas.tseries.offsets.LastWeekOfMonth.freqstr` Return a string representing the frequency. ``` >>> pd.DateOffset(5).freqstr '<5 * DateOffsets>' ```
LastWeekOfMonth.freqstr# Return a string representing the frequency. Examples >>> pd.DateOffset(5).freqstr '<5 * DateOffsets>' >>> pd.offsets.BusinessHour(2).freqstr '2BH' >>> pd.offsets.Nano().freqstr 'N' >>> pd.offsets.Nano(-3).freqstr '-3N'
reference/api/pandas.tseries.offsets.LastWeekOfMonth.freqstr.html
pandas.tseries.offsets.SemiMonthEnd.rollback
`pandas.tseries.offsets.SemiMonthEnd.rollback` Roll provided date backward to next offset only if not on offset. Rolled timestamp if not on offset, otherwise unchanged timestamp.
SemiMonthEnd.rollback()# Roll provided date backward to next offset only if not on offset. Returns TimeStampRolled timestamp if not on offset, otherwise unchanged timestamp.
reference/api/pandas.tseries.offsets.SemiMonthEnd.rollback.html
pandas.tseries.offsets.WeekOfMonth.is_anchored
`pandas.tseries.offsets.WeekOfMonth.is_anchored` Return boolean whether the frequency is a unit frequency (n=1). ``` >>> pd.DateOffset().is_anchored() True >>> pd.DateOffset(2).is_anchored() False ```
WeekOfMonth.is_anchored()# Return boolean whether the frequency is a unit frequency (n=1). Examples >>> pd.DateOffset().is_anchored() True >>> pd.DateOffset(2).is_anchored() False
reference/api/pandas.tseries.offsets.WeekOfMonth.is_anchored.html
pandas.tseries.offsets.Second.normalize
pandas.tseries.offsets.Second.normalize
Second.normalize#
reference/api/pandas.tseries.offsets.Second.normalize.html
pandas.Period.dayofweek
`pandas.Period.dayofweek` Day of the week the period lies in, with Monday=0 and Sunday=6. If the period frequency is lower than daily (e.g. hourly), and the period spans over multiple days, the day at the start of the period is used. ``` >>> per = pd.Period('2017-12-31 22:00', 'H') >>> per.day_of_week 6 ```
Period.dayofweek# Day of the week the period lies in, with Monday=0 and Sunday=6. If the period frequency is lower than daily (e.g. hourly), and the period spans over multiple days, the day at the start of the period is used. If the frequency is higher than daily (e.g. monthly), the last day of the period is used. Returns intDay of the week. See also Period.day_of_weekDay of the week the period lies in. Period.weekdayAlias of Period.day_of_week. Period.dayDay of the month. Period.dayofyearDay of the year. Examples >>> per = pd.Period('2017-12-31 22:00', 'H') >>> per.day_of_week 6 For periods that span over multiple days, the day at the beginning of the period is returned. >>> per = pd.Period('2017-12-31 22:00', '4H') >>> per.day_of_week 6 >>> per.start_time.day_of_week 6 For periods with a frequency higher than days, the last day of the period is returned. >>> per = pd.Period('2018-01', 'M') >>> per.day_of_week 2 >>> per.end_time.day_of_week 2
reference/api/pandas.Period.dayofweek.html
pandas maintenance
pandas maintenance
This guide is for pandas’ maintainers. It may also be interesting to contributors looking to understand the pandas development process and what steps are necessary to become a maintainer. The main contributing guide is available at Contributing to pandas. Roles# pandas uses two levels of permissions: triage and core team members. Triage members can label and close issues and pull requests. Core team members can label and close issues and pull request, and can merge pull requests. GitHub publishes the full list of permissions. Tasks# pandas is largely a volunteer project, so these tasks shouldn’t be read as “expectations” of triage and maintainers. Rather, they’re general descriptions of what it means to be a maintainer. Triage newly filed issues (see Issue triage) Review newly opened pull requests Respond to updates on existing issues and pull requests Drive discussion and decisions on stalled issues and pull requests Provide experience / wisdom on API design questions to ensure consistency and maintainability Project organization (run / attend developer meetings, represent pandas) https://matthewrocklin.com/blog/2019/05/18/maintainer may be interesting background reading. Issue triage# Here’s a typical workflow for triaging a newly opened issue. Thank the reporter for opening an issue The issue tracker is many people’s first interaction with the pandas project itself, beyond just using the library. As such, we want it to be a welcoming, pleasant experience. Is the necessary information provided? Ideally reporters would fill out the issue template, but many don’t. If crucial information (like the version of pandas they used), is missing feel free to ask for that and label the issue with “Needs info”. The report should follow the guidelines in Bug reports and enhancement requests. You may want to link to that if they didn’t follow the template. Make sure that the title accurately reflects the issue. Edit it yourself if it’s not clear. Is this a duplicate issue? We have many open issues. If a new issue is clearly a duplicate, label the new issue as “Duplicate” assign the milestone “No Action”, and close the issue with a link to the original issue. Make sure to still thank the reporter, and encourage them to chime in on the original issue, and perhaps try to fix it. If the new issue provides relevant information, such as a better or slightly different example, add it to the original issue as a comment or an edit to the original post. Is the issue minimal and reproducible? For bug reports, we ask that the reporter provide a minimal reproducible example. See https://matthewrocklin.com/blog/work/2018/02/28/minimal-bug-reports for a good explanation. If the example is not reproducible, or if it’s clearly not minimal, feel free to ask the reporter if they can provide and example or simplify the provided one. Do acknowledge that writing minimal reproducible examples is hard work. If the reporter is struggling, you can try to write one yourself and we’ll edit the original post to include it. If a reproducible example can’t be provided, add the “Needs info” label. If a reproducible example is provided, but you see a simplification, edit the original post with your simpler reproducible example. Is this a clearly defined feature request? Generally, pandas prefers to discuss and design new features in issues, before a pull request is made. Encourage the submitter to include a proposed API for the new feature. Having them write a full docstring is a good way to pin down specifics. We’ll need a discussion from several pandas maintainers before deciding whether the proposal is in scope for pandas. Is this a usage question? We prefer that usage questions are asked on StackOverflow with the pandas tag. https://stackoverflow.com/questions/tagged/pandas If it’s easy to answer, feel free to link to the relevant documentation section, let them know that in the future this kind of question should be on StackOverflow, and close the issue. What labels and milestones should I add? Apply the relevant labels. This is a bit of an art, and comes with experience. Look at similar issues to get a feel for how things are labeled. If the issue is clearly defined and the fix seems relatively straightforward, label the issue as “Good first issue”. Typically, new issues will be assigned the “Contributions welcome” milestone, unless it’s know that this issue should be addressed in a specific release (say because it’s a large regression). Closing issues# Be delicate here: many people interpret closing an issue as us saying that the conversation is over. It’s typically best to give the reporter some time to respond or self-close their issue if it’s determined that the behavior is not a bug, or the feature is out of scope. Sometimes reporters just go away though, and we’ll close the issue after the conversation has died. Reviewing pull requests# Anybody can review a pull request: regular contributors, triagers, or core-team members. But only core-team members can merge pull requests when they’re ready. Here are some things to check when reviewing a pull request. Tests should be in a sensible location: in the same file as closely related tests. New public APIs should be included somewhere in doc/source/reference/. New / changed API should use the versionadded or versionchanged directives in the docstring. User-facing changes should have a whatsnew in the appropriate file. Regression tests should reference the original GitHub issue number like # GH-1234. The pull request should be labeled and assigned the appropriate milestone (the next patch release for regression fixes and small bug fixes, the next minor milestone otherwise) Changes should comply with our Version policy. Backporting# pandas supports point releases (e.g. 1.4.3) that aim to: Fix bugs in new features introduced in the first minor version release. e.g. If a new feature was added in 1.4 and contains a bug, a fix can be applied in 1.4.3 Fix bugs that used to work in a few minor releases prior. There should be agreement between core team members that a backport is appropriate. e.g. If a feature worked in 1.2 and stopped working since 1.3, a fix can be applied in 1.4.3. Since pandas minor releases are based on Github branches (e.g. point release of 1.4 are based off the 1.4.x branch), “backporting” means merging a pull request fix to the main branch and correct minor branch associated with the next point release. By default, if a pull request is assigned to the next point release milestone within the Github interface, the backporting process should happen automatically by the @meeseeksdev bot once the pull request is merged. A new pull request will be made backporting the pull request to the correct version branch. Sometimes due to merge conflicts, a manual pull request will need to be made addressing the code conflict. If the bot does not automatically start the backporting process, you can also write a Github comment in the merged pull request to trigger the backport: @meeseeksdev backport version-branch This will trigger a workflow which will backport a given change to a branch (e.g. @meeseeksdev backport 1.4.x) Cleaning up old issues# Every open issue in pandas has a cost. Open issues make finding duplicates harder, and can make it harder to know what needs to be done in pandas. That said, closing issues isn’t a goal on its own. Our goal is to make pandas the best it can be, and that’s best done by ensuring that the quality of our open issues is high. Occasionally, bugs are fixed but the issue isn’t linked to in the Pull Request. In these cases, comment that “This has been fixed, but could use a test.” and label the issue as “Good First Issue” and “Needs Test”. If an older issue doesn’t follow our issue template, edit the original post to include a minimal example, the actual output, and the expected output. Uniformity in issue reports is valuable. If an older issue lacks a reproducible example, label it as “Needs Info” and ask them to provide one (or write one yourself if possible). If one isn’t provide reasonably soon, close it according to the policies in Closing issues. Cleaning up old pull requests# Occasionally, contributors are unable to finish off a pull request. If some time has passed (two weeks, say) since the last review requesting changes, gently ask if they’re still interested in working on this. If another two weeks or so passes with no response, thank them for their work and close the pull request. Comment on the original issue that “There’s a stalled PR at #1234 that may be helpful.”, and perhaps label the issue as “Good first issue” if the PR was relatively close to being accepted. Additionally, core-team members can push to contributors branches. This can be helpful for pushing an important PR across the line, or for fixing a small merge conflict. Becoming a pandas maintainer# The full process is outlined in our governance documents. In summary, we’re happy to give triage permissions to anyone who shows interest by being helpful on the issue tracker. The required steps for adding a maintainer are: Contact the contributor and ask their interest to join. Add the contributor to the appropriate Github Team if accepted the invitation. pandas-core is for core team members pandas-triage is for pandas triage members Add the contributor to the pandas Google group. Create a pull request to add the contributor’s Github handle to pandas-dev/pandas/web/pandas/config.yml. Create a pull request to add the contributor’s name/Github handle to the governance document. The current list of core-team members is at https://github.com/pandas-dev/pandas-governance/blob/master/people.md Merging pull requests# Only core team members can merge pull requests. We have a few guidelines. You should typically not self-merge your own pull requests. Exceptions include things like small changes to fix CI (e.g. pinning a package version). You should not merge pull requests that have an active discussion, or pull requests that has any -1 votes from a core maintainer. pandas operates by consensus. For larger changes, it’s good to have a +1 from at least two core team members. In addition to the items listed in Closing issues, you should verify that the pull request is assigned the correct milestone. Pull requests merged with a patch-release milestone will typically be backported by our bot. Verify that the bot noticed the merge (it will leave a comment within a minute typically). If a manual backport is needed please do that, and remove the “Needs backport” label once you’ve done it manually. If you forget to assign a milestone before tagging, you can request the bot to backport it with: @Meeseeksdev backport <branch> Benchmark machine# The team currently owns dedicated hardware for hosting a website for pandas’ ASV performance benchmark. The results are published to http://pandas.pydata.org/speed/pandas/ Configuration# The machine can be configured with the Ansible playbook in https://github.com/tomaugspurger/asv-runner. Publishing# The results are published to another Github repository, https://github.com/tomaugspurger/asv-collection. Finally, we have a cron job on our docs server to pull from https://github.com/tomaugspurger/asv-collection, to serve them from /speed. Ask Tom or Joris for access to the webserver. Debugging# The benchmarks are scheduled by Airflow. It has a dashboard for viewing and debugging the results. You’ll need to setup an SSH tunnel to view them ssh -L 8080:localhost:8080 [email protected] Release process# The process for releasing a new version of pandas can be found at https://github.com/pandas-dev/pandas-release
development/maintaining.html
pandas.api.types.is_datetime64_any_dtype
`pandas.api.types.is_datetime64_any_dtype` Check whether the provided array or dtype is of the datetime64 dtype. The array or dtype to check. ``` >>> is_datetime64_any_dtype(str) False >>> is_datetime64_any_dtype(int) False >>> is_datetime64_any_dtype(np.datetime64) # can be tz-naive True >>> is_datetime64_any_dtype(DatetimeTZDtype("ns", "US/Eastern")) True >>> is_datetime64_any_dtype(np.array(['a', 'b'])) False >>> is_datetime64_any_dtype(np.array([1, 2])) False >>> is_datetime64_any_dtype(np.array([], dtype="datetime64[ns]")) True >>> is_datetime64_any_dtype(pd.DatetimeIndex([1, 2, 3], dtype="datetime64[ns]")) True ```
pandas.api.types.is_datetime64_any_dtype(arr_or_dtype)[source]# Check whether the provided array or dtype is of the datetime64 dtype. Parameters arr_or_dtypearray-like or dtypeThe array or dtype to check. Returns boolWhether or not the array or dtype is of the datetime64 dtype. Examples >>> is_datetime64_any_dtype(str) False >>> is_datetime64_any_dtype(int) False >>> is_datetime64_any_dtype(np.datetime64) # can be tz-naive True >>> is_datetime64_any_dtype(DatetimeTZDtype("ns", "US/Eastern")) True >>> is_datetime64_any_dtype(np.array(['a', 'b'])) False >>> is_datetime64_any_dtype(np.array([1, 2])) False >>> is_datetime64_any_dtype(np.array([], dtype="datetime64[ns]")) True >>> is_datetime64_any_dtype(pd.DatetimeIndex([1, 2, 3], dtype="datetime64[ns]")) True
reference/api/pandas.api.types.is_datetime64_any_dtype.html
pandas.Index.map
`pandas.Index.map` Map values using an input mapping or function.
Index.map(mapper, na_action=None)[source]# Map values using an input mapping or function. Parameters mapperfunction, dict, or SeriesMapping correspondence. na_action{None, ‘ignore’}If ‘ignore’, propagate NA values, without passing them to the mapping correspondence. Returns appliedUnion[Index, MultiIndex], inferredThe output of the mapping function applied to the index. If the function returns a tuple with more than one element a MultiIndex will be returned.
reference/api/pandas.Index.map.html
pandas.DataFrame.pow
`pandas.DataFrame.pow` Get Exponential power of dataframe and other, element-wise (binary operator pow). Equivalent to dataframe ** other, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, rpow. ``` >>> df = pd.DataFrame({'angles': [0, 3, 4], ... 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle']) >>> df angles degrees circle 0 360 triangle 3 180 rectangle 4 360 ```
DataFrame.pow(other, axis='columns', level=None, fill_value=None)[source]# Get Exponential power of dataframe and other, element-wise (binary operator pow). Equivalent to dataframe ** other, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, rpow. Among flexible wrappers (add, sub, mul, div, mod, pow) to arithmetic operators: +, -, *, /, //, %, **. Parameters otherscalar, sequence, Series, dict or DataFrameAny single or multiple element data structure, or list-like object. axis{0 or ‘index’, 1 or ‘columns’}Whether to compare by the index (0 or ‘index’) or columns. (1 or ‘columns’). For Series input, axis to match Series index on. levelint or labelBroadcast across a level, matching Index values on the passed MultiIndex level. fill_valuefloat or None, default NoneFill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing. Returns DataFrameResult of the arithmetic operation. See also DataFrame.addAdd DataFrames. DataFrame.subSubtract DataFrames. DataFrame.mulMultiply DataFrames. DataFrame.divDivide DataFrames (float division). DataFrame.truedivDivide DataFrames (float division). DataFrame.floordivDivide DataFrames (integer division). DataFrame.modCalculate modulo (remainder after division). DataFrame.powCalculate exponential power. Notes Mismatched indices will be unioned together. Examples >>> df = pd.DataFrame({'angles': [0, 3, 4], ... 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle']) >>> df angles degrees circle 0 360 triangle 3 180 rectangle 4 360 Add a scalar with operator version which return the same results. >>> df + 1 angles degrees circle 1 361 triangle 4 181 rectangle 5 361 >>> df.add(1) angles degrees circle 1 361 triangle 4 181 rectangle 5 361 Divide by constant with reverse version. >>> df.div(10) angles degrees circle 0.0 36.0 triangle 0.3 18.0 rectangle 0.4 36.0 >>> df.rdiv(10) angles degrees circle inf 0.027778 triangle 3.333333 0.055556 rectangle 2.500000 0.027778 Subtract a list and Series by axis with operator version. >>> df - [1, 2] angles degrees circle -1 358 triangle 2 178 rectangle 3 358 >>> df.sub([1, 2], axis='columns') angles degrees circle -1 358 triangle 2 178 rectangle 3 358 >>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']), ... axis='index') angles degrees circle -1 359 triangle 2 179 rectangle 3 359 Multiply a dictionary by axis. >>> df.mul({'angles': 0, 'degrees': 2}) angles degrees circle 0 720 triangle 0 360 rectangle 0 720 >>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index') angles degrees circle 0 0 triangle 6 360 rectangle 12 1080 Multiply a DataFrame of different shape with operator version. >>> other = pd.DataFrame({'angles': [0, 3, 4]}, ... index=['circle', 'triangle', 'rectangle']) >>> other angles circle 0 triangle 3 rectangle 4 >>> df * other angles degrees circle 0 NaN triangle 9 NaN rectangle 16 NaN >>> df.mul(other, fill_value=0) angles degrees circle 0 0.0 triangle 9 0.0 rectangle 16 0.0 Divide by a MultiIndex by level. >>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6], ... 'degrees': [360, 180, 360, 360, 540, 720]}, ... index=[['A', 'A', 'A', 'B', 'B', 'B'], ... ['circle', 'triangle', 'rectangle', ... 'square', 'pentagon', 'hexagon']]) >>> df_multindex angles degrees A circle 0 360 triangle 3 180 rectangle 4 360 B square 4 360 pentagon 5 540 hexagon 6 720 >>> df.div(df_multindex, level=1, fill_value=0) angles degrees A circle NaN 1.0 triangle 1.0 1.0 rectangle 1.0 1.0 B square 0.0 0.0 pentagon 0.0 0.0 hexagon 0.0 0.0
reference/api/pandas.DataFrame.pow.html
pandas.Index.is_type_compatible
`pandas.Index.is_type_compatible` Whether the index type is compatible with the provided type.
Index.is_type_compatible(kind)[source]# Whether the index type is compatible with the provided type.
reference/api/pandas.Index.is_type_compatible.html
pandas.tseries.offsets.Second.apply
pandas.tseries.offsets.Second.apply
Second.apply()#
reference/api/pandas.tseries.offsets.Second.apply.html
pandas.core.resample.Resampler.quantile
`pandas.core.resample.Resampler.quantile` Return value at the given quantile.
Resampler.quantile(q=0.5, **kwargs)[source]# Return value at the given quantile. Parameters qfloat or array-like, default 0.5 (50% quantile) Returns DataFrame or SeriesQuantile of values within each group. See also Series.quantileReturn a series, where the index is q and the values are the quantiles. DataFrame.quantileReturn a DataFrame, where the columns are the columns of self, and the values are the quantiles. DataFrameGroupBy.quantileReturn a DataFrame, where the coulmns are groupby columns, and the values are its quantiles.
reference/api/pandas.core.resample.Resampler.quantile.html
pandas.errors.CategoricalConversionWarning
`pandas.errors.CategoricalConversionWarning` Warning is raised when reading a partial labeled Stata file using a iterator. ``` >>> from pandas.io.stata import StataReader >>> with StataReader('dta_file', chunksize=2) as reader: ... for i, block in enumerate(reader): ... print(i, block)) ... # CategoricalConversionWarning: One or more series with value labels... ```
exception pandas.errors.CategoricalConversionWarning[source]# Warning is raised when reading a partial labeled Stata file using a iterator. Examples >>> from pandas.io.stata import StataReader >>> with StataReader('dta_file', chunksize=2) as reader: ... for i, block in enumerate(reader): ... print(i, block)) ... # CategoricalConversionWarning: One or more series with value labels...
reference/api/pandas.errors.CategoricalConversionWarning.html
pandas.tseries.offsets.CustomBusinessMonthBegin.is_year_start
`pandas.tseries.offsets.CustomBusinessMonthBegin.is_year_start` Return boolean whether a timestamp occurs on the year start. ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_year_start(ts) True ```
CustomBusinessMonthBegin.is_year_start()# Return boolean whether a timestamp occurs on the year start. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_year_start(ts) True
reference/api/pandas.tseries.offsets.CustomBusinessMonthBegin.is_year_start.html
pandas.tseries.offsets.Day.__call__
`pandas.tseries.offsets.Day.__call__` Call self as a function.
Day.__call__(*args, **kwargs)# Call self as a function.
reference/api/pandas.tseries.offsets.Day.__call__.html
pandas.Timedelta.is_populated
`pandas.Timedelta.is_populated` Is_populated property.
Timedelta.is_populated# Is_populated property. Deprecated since version 1.5.0: This argument is deprecated.
reference/api/pandas.Timedelta.is_populated.html
pandas.Timestamp.year
pandas.Timestamp.year
Timestamp.year#
reference/api/pandas.Timestamp.year.html
pandas.Flags
`pandas.Flags` Flags that apply to pandas objects. ``` >>> df = pd.DataFrame() >>> df.flags <Flags(allows_duplicate_labels=True)> >>> df.flags.allows_duplicate_labels = False >>> df.flags <Flags(allows_duplicate_labels=False)> ```
class pandas.Flags(obj, *, allows_duplicate_labels)[source]# Flags that apply to pandas objects. New in version 1.2.0. Parameters objSeries or DataFrameThe object these flags are associated with. allows_duplicate_labelsbool, default TrueWhether to allow duplicate labels in this object. By default, duplicate labels are permitted. Setting this to False will cause an errors.DuplicateLabelError to be raised when index (or columns for DataFrame) is not unique, or any subsequent operation on introduces duplicates. See Disallowing Duplicate Labels for more. Warning This is an experimental feature. Currently, many methods fail to propagate the allows_duplicate_labels value. In future versions it is expected that every method taking or returning one or more DataFrame or Series objects will propagate allows_duplicate_labels. Notes Attributes can be set in two ways >>> df = pd.DataFrame() >>> df.flags <Flags(allows_duplicate_labels=True)> >>> df.flags.allows_duplicate_labels = False >>> df.flags <Flags(allows_duplicate_labels=False)> >>> df.flags['allows_duplicate_labels'] = True >>> df.flags <Flags(allows_duplicate_labels=True)> Attributes allows_duplicate_labels Whether this object allows duplicate labels.
reference/api/pandas.Flags.html
pandas.Series.isna
`pandas.Series.isna` Detect missing values. Return a boolean same-sized object indicating if the values are NA. NA values, such as None or numpy.NaN, gets mapped to True values. Everything else gets mapped to False values. Characters such as empty strings '' or numpy.inf are not considered NA values (unless you set pandas.options.mode.use_inf_as_na = True). ``` >>> df = pd.DataFrame(dict(age=[5, 6, np.NaN], ... born=[pd.NaT, pd.Timestamp('1939-05-27'), ... pd.Timestamp('1940-04-25')], ... name=['Alfred', 'Batman', ''], ... toy=[None, 'Batmobile', 'Joker'])) >>> df age born name toy 0 5.0 NaT Alfred None 1 6.0 1939-05-27 Batman Batmobile 2 NaN 1940-04-25 Joker ```
Series.isna()[source]# Detect missing values. Return a boolean same-sized object indicating if the values are NA. NA values, such as None or numpy.NaN, gets mapped to True values. Everything else gets mapped to False values. Characters such as empty strings '' or numpy.inf are not considered NA values (unless you set pandas.options.mode.use_inf_as_na = True). Returns SeriesMask of bool values for each element in Series that indicates whether an element is an NA value. See also Series.isnullAlias of isna. Series.notnaBoolean inverse of isna. Series.dropnaOmit axes labels with missing values. isnaTop-level isna. Examples Show which entries in a DataFrame are NA. >>> df = pd.DataFrame(dict(age=[5, 6, np.NaN], ... born=[pd.NaT, pd.Timestamp('1939-05-27'), ... pd.Timestamp('1940-04-25')], ... name=['Alfred', 'Batman', ''], ... toy=[None, 'Batmobile', 'Joker'])) >>> df age born name toy 0 5.0 NaT Alfred None 1 6.0 1939-05-27 Batman Batmobile 2 NaN 1940-04-25 Joker >>> df.isna() age born name toy 0 False True False True 1 False False False False 2 True False False False Show which entries in a Series are NA. >>> ser = pd.Series([5, 6, np.NaN]) >>> ser 0 5.0 1 6.0 2 NaN dtype: float64 >>> ser.isna() 0 False 1 False 2 True dtype: bool
reference/api/pandas.Series.isna.html
pandas.tseries.offsets.BQuarterBegin.copy
`pandas.tseries.offsets.BQuarterBegin.copy` Return a copy of the frequency. ``` >>> freq = pd.DateOffset(1) >>> freq_copy = freq.copy() >>> freq is freq_copy False ```
BQuarterBegin.copy()# Return a copy of the frequency. Examples >>> freq = pd.DateOffset(1) >>> freq_copy = freq.copy() >>> freq is freq_copy False
reference/api/pandas.tseries.offsets.BQuarterBegin.copy.html
pandas.Series.str.get
`pandas.Series.str.get` Extract element from each component at specified position or with specified key. ``` >>> s = pd.Series(["String", ... (1, 2, 3), ... ["a", "b", "c"], ... 123, ... -456, ... {1: "Hello", "2": "World"}]) >>> s 0 String 1 (1, 2, 3) 2 [a, b, c] 3 123 4 -456 5 {1: 'Hello', '2': 'World'} dtype: object ```
Series.str.get(i)[source]# Extract element from each component at specified position or with specified key. Extract element from lists, tuples, dict, or strings in each element in the Series/Index. Parameters iint or hashable dict labelPosition or key of element to extract. Returns Series or Index Examples >>> s = pd.Series(["String", ... (1, 2, 3), ... ["a", "b", "c"], ... 123, ... -456, ... {1: "Hello", "2": "World"}]) >>> s 0 String 1 (1, 2, 3) 2 [a, b, c] 3 123 4 -456 5 {1: 'Hello', '2': 'World'} dtype: object >>> s.str.get(1) 0 t 1 2 2 b 3 NaN 4 NaN 5 Hello dtype: object >>> s.str.get(-1) 0 g 1 3 2 c 3 NaN 4 NaN 5 None dtype: object Return element with given key >>> s = pd.Series([{"name": "Hello", "value": "World"}, ... {"name": "Goodbye", "value": "Planet"}]) >>> s.str.get('name') 0 Hello 1 Goodbye dtype: object
reference/api/pandas.Series.str.get.html
pandas.Timedelta.resolution_string
`pandas.Timedelta.resolution_string` Return a string representing the lowest timedelta resolution. ``` >>> td = pd.Timedelta('1 days 2 min 3 us 42 ns') >>> td.resolution_string 'N' ```
Timedelta.resolution_string# Return a string representing the lowest timedelta resolution. Each timedelta has a defined resolution that represents the lowest OR most granular level of precision. Each level of resolution is represented by a short string as defined below: Resolution: Return value Days: ‘D’ Hours: ‘H’ Minutes: ‘T’ Seconds: ‘S’ Milliseconds: ‘L’ Microseconds: ‘U’ Nanoseconds: ‘N’ Returns strTimedelta resolution. Examples >>> td = pd.Timedelta('1 days 2 min 3 us 42 ns') >>> td.resolution_string 'N' >>> td = pd.Timedelta('1 days 2 min 3 us') >>> td.resolution_string 'U' >>> td = pd.Timedelta('2 min 3 s') >>> td.resolution_string 'S' >>> td = pd.Timedelta(36, unit='us') >>> td.resolution_string 'U'
reference/api/pandas.Timedelta.resolution_string.html
pandas.Series.rdivmod
`pandas.Series.rdivmod` Return Integer division and modulo of series and other, element-wise (binary operator rdivmod). Equivalent to other divmod series, but with support to substitute a fill_value for missing data in either one of the inputs. ``` >>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) >>> a a 1.0 b 1.0 c 1.0 d NaN dtype: float64 >>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) >>> b a 1.0 b NaN d 1.0 e NaN dtype: float64 >>> a.divmod(b, fill_value=0) (a 1.0 b NaN c NaN d 0.0 e NaN dtype: float64, a 0.0 b NaN c NaN d 0.0 e NaN dtype: float64) ```
Series.rdivmod(other, level=None, fill_value=None, axis=0)[source]# Return Integer division and modulo of series and other, element-wise (binary operator rdivmod). Equivalent to other divmod series, but with support to substitute a fill_value for missing data in either one of the inputs. Parameters otherSeries or scalar value levelint or nameBroadcast across a level, matching Index values on the passed MultiIndex level. fill_valueNone or float value, default None (NaN)Fill existing missing (NaN) values, and any new element needed for successful Series alignment, with this value before computation. If data in both corresponding Series locations is missing the result of filling (at that location) will be missing. axis{0 or ‘index’}Unused. Parameter needed for compatibility with DataFrame. Returns 2-Tuple of SeriesThe result of the operation. See also Series.divmodElement-wise Integer division and modulo, see Python documentation for more details. Examples >>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) >>> a a 1.0 b 1.0 c 1.0 d NaN dtype: float64 >>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) >>> b a 1.0 b NaN d 1.0 e NaN dtype: float64 >>> a.divmod(b, fill_value=0) (a 1.0 b NaN c NaN d 0.0 e NaN dtype: float64, a 0.0 b NaN c NaN d 0.0 e NaN dtype: float64)
reference/api/pandas.Series.rdivmod.html
pandas.Timestamp.day_of_year
`pandas.Timestamp.day_of_year` Return the day of the year. ``` >>> ts = pd.Timestamp(2020, 3, 14) >>> ts.day_of_year 74 ```
Timestamp.day_of_year# Return the day of the year. Examples >>> ts = pd.Timestamp(2020, 3, 14) >>> ts.day_of_year 74
reference/api/pandas.Timestamp.day_of_year.html
pandas.plotting.parallel_coordinates
`pandas.plotting.parallel_coordinates` Parallel coordinates plotting. ``` >>> df = pd.read_csv( ... 'https://raw.githubusercontent.com/pandas-dev/' ... 'pandas/main/pandas/tests/io/data/csv/iris.csv' ... ) >>> pd.plotting.parallel_coordinates( ... df, 'Name', color=('#556270', '#4ECDC4', '#C7F464') ... ) <AxesSubplot: xlabel='y(t)', ylabel='y(t + 1)'> ```
pandas.plotting.parallel_coordinates(frame, class_column, cols=None, ax=None, color=None, use_columns=False, xticks=None, colormap=None, axvlines=True, axvlines_kwds=None, sort_labels=False, **kwargs)[source]# Parallel coordinates plotting. Parameters frameDataFrame class_columnstrColumn name containing class names. colslist, optionalA list of column names to use. axmatplotlib.axis, optionalMatplotlib axis object. colorlist or tuple, optionalColors to use for the different classes. use_columnsbool, optionalIf true, columns will be used as xticks. xtickslist or tuple, optionalA list of values to use for xticks. colormapstr or matplotlib colormap, default NoneColormap to use for line colors. axvlinesbool, optionalIf true, vertical lines will be added at each xtick. axvlines_kwdskeywords, optionalOptions to be passed to axvline method for vertical lines. sort_labelsbool, default FalseSort class_column labels, useful when assigning colors. **kwargsOptions to pass to matplotlib plotting method. Returns class:matplotlib.axis.Axes Examples >>> df = pd.read_csv( ... 'https://raw.githubusercontent.com/pandas-dev/' ... 'pandas/main/pandas/tests/io/data/csv/iris.csv' ... ) >>> pd.plotting.parallel_coordinates( ... df, 'Name', color=('#556270', '#4ECDC4', '#C7F464') ... ) <AxesSubplot: xlabel='y(t)', ylabel='y(t + 1)'>
reference/api/pandas.plotting.parallel_coordinates.html
pandas.core.groupby.DataFrameGroupBy.fillna
`pandas.core.groupby.DataFrameGroupBy.fillna` Fill NA/NaN values using the specified method. Value to use to fill holes (e.g. 0), alternately a dict/Series/DataFrame of values specifying which value to use for each index (for a Series) or column (for a DataFrame). Values not in the dict/Series/DataFrame will not be filled. This value cannot be a list. ``` >>> df = pd.DataFrame([[np.nan, 2, np.nan, 0], ... [3, 4, np.nan, 1], ... [np.nan, np.nan, np.nan, np.nan], ... [np.nan, 3, np.nan, 4]], ... columns=list("ABCD")) >>> df A B C D 0 NaN 2.0 NaN 0.0 1 3.0 4.0 NaN 1.0 2 NaN NaN NaN NaN 3 NaN 3.0 NaN 4.0 ```
property DataFrameGroupBy.fillna[source]# Fill NA/NaN values using the specified method. Parameters valuescalar, dict, Series, or DataFrameValue to use to fill holes (e.g. 0), alternately a dict/Series/DataFrame of values specifying which value to use for each index (for a Series) or column (for a DataFrame). Values not in the dict/Series/DataFrame will not be filled. This value cannot be a list. method{‘backfill’, ‘bfill’, ‘pad’, ‘ffill’, None}, default NoneMethod to use for filling holes in reindexed Series pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use next valid observation to fill gap. axis{0 or ‘index’, 1 or ‘columns’}Axis along which to fill missing values. For Series this parameter is unused and defaults to 0. inplacebool, default FalseIf True, fill in-place. Note: this will modify any other views on this object (e.g., a no-copy slice for a column in a DataFrame). limitint, default NoneIf method is specified, this is the maximum number of consecutive NaN values to forward/backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. If method is not specified, this is the maximum number of entries along the entire axis where NaNs will be filled. Must be greater than 0 if not None. downcastdict, default is NoneA dict of item->dtype of what to downcast if possible, or the string ‘infer’ which will try to downcast to an appropriate equal type (e.g. float64 to int64 if possible). Returns DataFrame or NoneObject with missing values filled or None if inplace=True. See also interpolateFill NaN values using interpolation. reindexConform object to new index. asfreqConvert TimeSeries to specified frequency. Examples >>> df = pd.DataFrame([[np.nan, 2, np.nan, 0], ... [3, 4, np.nan, 1], ... [np.nan, np.nan, np.nan, np.nan], ... [np.nan, 3, np.nan, 4]], ... columns=list("ABCD")) >>> df A B C D 0 NaN 2.0 NaN 0.0 1 3.0 4.0 NaN 1.0 2 NaN NaN NaN NaN 3 NaN 3.0 NaN 4.0 Replace all NaN elements with 0s. >>> df.fillna(0) A B C D 0 0.0 2.0 0.0 0.0 1 3.0 4.0 0.0 1.0 2 0.0 0.0 0.0 0.0 3 0.0 3.0 0.0 4.0 We can also propagate non-null values forward or backward. >>> df.fillna(method="ffill") A B C D 0 NaN 2.0 NaN 0.0 1 3.0 4.0 NaN 1.0 2 3.0 4.0 NaN 1.0 3 3.0 3.0 NaN 4.0 Replace all NaN elements in column ‘A’, ‘B’, ‘C’, and ‘D’, with 0, 1, 2, and 3 respectively. >>> values = {"A": 0, "B": 1, "C": 2, "D": 3} >>> df.fillna(value=values) A B C D 0 0.0 2.0 2.0 0.0 1 3.0 4.0 2.0 1.0 2 0.0 1.0 2.0 3.0 3 0.0 3.0 2.0 4.0 Only replace the first NaN element. >>> df.fillna(value=values, limit=1) A B C D 0 0.0 2.0 2.0 0.0 1 3.0 4.0 NaN 1.0 2 NaN 1.0 NaN 3.0 3 NaN 3.0 NaN 4.0 When filling using a DataFrame, replacement happens along the same column names and same indices >>> df2 = pd.DataFrame(np.zeros((4, 4)), columns=list("ABCE")) >>> df.fillna(df2) A B C D 0 0.0 2.0 0.0 0.0 1 3.0 4.0 0.0 1.0 2 0.0 0.0 0.0 NaN 3 0.0 3.0 0.0 4.0 Note that column D is not affected since it is not present in df2.
reference/api/pandas.core.groupby.DataFrameGroupBy.fillna.html
pandas.ExcelFile.parse
`pandas.ExcelFile.parse` Parse specified sheet(s) into a DataFrame. Equivalent to read_excel(ExcelFile, …) See the read_excel docstring for more info on accepted parameters.
ExcelFile.parse(sheet_name=0, header=0, names=None, index_col=None, usecols=None, squeeze=None, converters=None, true_values=None, false_values=None, skiprows=None, nrows=None, na_values=None, parse_dates=False, date_parser=None, thousands=None, comment=None, skipfooter=0, convert_float=None, mangle_dupe_cols=True, **kwds)[source]# Parse specified sheet(s) into a DataFrame. Equivalent to read_excel(ExcelFile, …) See the read_excel docstring for more info on accepted parameters. Returns DataFrame or dict of DataFramesDataFrame from the passed in Excel file.
reference/api/pandas.ExcelFile.parse.html
pandas.MultiIndex.get_indexer
`pandas.MultiIndex.get_indexer` Compute indexer and mask for new index given the current index. ``` >>> index = pd.Index(['c', 'a', 'b']) >>> index.get_indexer(['a', 'b', 'x']) array([ 1, 2, -1]) ```
MultiIndex.get_indexer(target, method=None, limit=None, tolerance=None)[source]# Compute indexer and mask for new index given the current index. The indexer should be then used as an input to ndarray.take to align the current data to the new index. Parameters targetIndex method{None, ‘pad’/’ffill’, ‘backfill’/’bfill’, ‘nearest’}, optional default: exact matches only. pad / ffill: find the PREVIOUS index value if no exact match. backfill / bfill: use NEXT index value if no exact match nearest: use the NEAREST index value if no exact match. Tied distances are broken by preferring the larger index value. limitint, optionalMaximum number of consecutive labels in target to match for inexact matches. toleranceoptionalMaximum distance between original and new labels for inexact matches. The values of the index at the matching locations must satisfy the equation abs(index[indexer] - target) <= tolerance. Tolerance may be a scalar value, which applies the same tolerance to all values, or list-like, which applies variable tolerance per element. List-like includes list, tuple, array, Series, and must be the same size as the index and its dtype must exactly match the index’s type. Returns indexernp.ndarray[np.intp]Integers from 0 to n - 1 indicating that the index at these positions matches the corresponding target values. Missing values in the target are marked by -1. Notes Returns -1 for unmatched values, for further explanation see the example below. Examples >>> index = pd.Index(['c', 'a', 'b']) >>> index.get_indexer(['a', 'b', 'x']) array([ 1, 2, -1]) Notice that the return value is an array of locations in index and x is marked by -1, as it is not in index.
reference/api/pandas.MultiIndex.get_indexer.html
pandas.Series.T
`pandas.Series.T` Return the transpose, which is by definition self.
property Series.T[source]# Return the transpose, which is by definition self.
reference/api/pandas.Series.T.html
pandas.tseries.offsets.CustomBusinessMonthEnd.is_month_start
`pandas.tseries.offsets.CustomBusinessMonthEnd.is_month_start` Return boolean whether a timestamp occurs on the month start. Examples ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_month_start(ts) True ```
CustomBusinessMonthEnd.is_month_start()# Return boolean whether a timestamp occurs on the month start. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_month_start(ts) True
reference/api/pandas.tseries.offsets.CustomBusinessMonthEnd.is_month_start.html
pandas.Series.expanding
`pandas.Series.expanding` Provide expanding window calculations. ``` >>> df = pd.DataFrame({"B": [0, 1, 2, np.nan, 4]}) >>> df B 0 0.0 1 1.0 2 2.0 3 NaN 4 4.0 ```
Series.expanding(min_periods=1, center=None, axis=0, method='single')[source]# Provide expanding window calculations. Parameters min_periodsint, default 1Minimum number of observations in window required to have a value; otherwise, result is np.nan. centerbool, default FalseIf False, set the window labels as the right edge of the window index. If True, set the window labels as the center of the window index. Deprecated since version 1.1.0. axisint or str, default 0If 0 or 'index', roll across the rows. If 1 or 'columns', roll across the columns. For Series this parameter is unused and defaults to 0. methodstr {‘single’, ‘table’}, default ‘single’Execute the rolling operation per single column or row ('single') or over the entire object ('table'). This argument is only implemented when specifying engine='numba' in the method call. New in version 1.3.0. Returns Expanding subclass See also rollingProvides rolling window calculations. ewmProvides exponential weighted functions. Notes See Windowing Operations for further usage details and examples. Examples >>> df = pd.DataFrame({"B": [0, 1, 2, np.nan, 4]}) >>> df B 0 0.0 1 1.0 2 2.0 3 NaN 4 4.0 min_periods Expanding sum with 1 vs 3 observations needed to calculate a value. >>> df.expanding(1).sum() B 0 0.0 1 1.0 2 3.0 3 3.0 4 7.0 >>> df.expanding(3).sum() B 0 NaN 1 NaN 2 3.0 3 3.0 4 7.0
reference/api/pandas.Series.expanding.html
pandas.tseries.offsets.CustomBusinessDay.is_year_end
`pandas.tseries.offsets.CustomBusinessDay.is_year_end` Return boolean whether a timestamp occurs on the year end. ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_year_end(ts) False ```
CustomBusinessDay.is_year_end()# Return boolean whether a timestamp occurs on the year end. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_year_end(ts) False
reference/api/pandas.tseries.offsets.CustomBusinessDay.is_year_end.html
pandas.tseries.offsets.Week.is_year_start
`pandas.tseries.offsets.Week.is_year_start` Return boolean whether a timestamp occurs on the year start. ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_year_start(ts) True ```
Week.is_year_start()# Return boolean whether a timestamp occurs on the year start. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_year_start(ts) True
reference/api/pandas.tseries.offsets.Week.is_year_start.html
pandas.tseries.offsets.CustomBusinessDay.is_quarter_end
`pandas.tseries.offsets.CustomBusinessDay.is_quarter_end` Return boolean whether a timestamp occurs on the quarter end. ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_quarter_end(ts) False ```
CustomBusinessDay.is_quarter_end()# Return boolean whether a timestamp occurs on the quarter end. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_quarter_end(ts) False
reference/api/pandas.tseries.offsets.CustomBusinessDay.is_quarter_end.html
pandas.io.formats.style.Styler.template_latex
pandas.io.formats.style.Styler.template_latex
Styler.template_latex = <Template 'latex.tpl'>#
reference/api/pandas.io.formats.style.Styler.template_latex.html
pandas.plotting.bootstrap_plot
`pandas.plotting.bootstrap_plot` Bootstrap plot on mean, median and mid-range statistics. The bootstrap plot is used to estimate the uncertainty of a statistic by relaying on random sampling with replacement [1]. This function will generate bootstrapping plots for mean, median and mid-range statistics for the given number of samples of the given size. ``` >>> s = pd.Series(np.random.uniform(size=100)) >>> pd.plotting.bootstrap_plot(s) <Figure size 640x480 with 6 Axes> ```
pandas.plotting.bootstrap_plot(series, fig=None, size=50, samples=500, **kwds)[source]# Bootstrap plot on mean, median and mid-range statistics. The bootstrap plot is used to estimate the uncertainty of a statistic by relaying on random sampling with replacement [1]. This function will generate bootstrapping plots for mean, median and mid-range statistics for the given number of samples of the given size. 1 “Bootstrapping (statistics)” in https://en.wikipedia.org/wiki/Bootstrapping_%28statistics%29 Parameters seriespandas.SeriesSeries from where to get the samplings for the bootstrapping. figmatplotlib.figure.Figure, default NoneIf given, it will use the fig reference for plotting instead of creating a new one with default parameters. sizeint, default 50Number of data points to consider during each sampling. It must be less than or equal to the length of the series. samplesint, default 500Number of times the bootstrap procedure is performed. **kwdsOptions to pass to matplotlib plotting method. Returns matplotlib.figure.FigureMatplotlib figure. See also DataFrame.plotBasic plotting for DataFrame objects. Series.plotBasic plotting for Series objects. Examples This example draws a basic bootstrap plot for a Series. >>> s = pd.Series(np.random.uniform(size=100)) >>> pd.plotting.bootstrap_plot(s) <Figure size 640x480 with 6 Axes>
reference/api/pandas.plotting.bootstrap_plot.html
pandas.DataFrame.ffill
`pandas.DataFrame.ffill` Synonym for DataFrame.fillna() with method='ffill'.
DataFrame.ffill(*, axis=None, inplace=False, limit=None, downcast=None)[source]# Synonym for DataFrame.fillna() with method='ffill'. Returns Series/DataFrame or NoneObject with missing values filled or None if inplace=True.
reference/api/pandas.DataFrame.ffill.html
pandas.tseries.offsets.DateOffset.name
`pandas.tseries.offsets.DateOffset.name` Return a string representing the base frequency. ``` >>> pd.offsets.Hour().name 'H' ```
DateOffset.name# Return a string representing the base frequency. Examples >>> pd.offsets.Hour().name 'H' >>> pd.offsets.Hour(5).name 'H'
reference/api/pandas.tseries.offsets.DateOffset.name.html
pandas.tseries.offsets.BusinessMonthBegin.nanos
pandas.tseries.offsets.BusinessMonthBegin.nanos
BusinessMonthBegin.nanos#
reference/api/pandas.tseries.offsets.BusinessMonthBegin.nanos.html
pandas.Series.str.lower
`pandas.Series.str.lower` Convert strings in the Series/Index to lowercase. ``` >>> s = pd.Series(['lower', 'CAPITALS', 'this is a sentence', 'SwApCaSe']) >>> s 0 lower 1 CAPITALS 2 this is a sentence 3 SwApCaSe dtype: object ```
Series.str.lower()[source]# Convert strings in the Series/Index to lowercase. Equivalent to str.lower(). Returns Series or Index of object See also Series.str.lowerConverts all characters to lowercase. Series.str.upperConverts all characters to uppercase. Series.str.titleConverts first character of each word to uppercase and remaining to lowercase. Series.str.capitalizeConverts first character to uppercase and remaining to lowercase. Series.str.swapcaseConverts uppercase to lowercase and lowercase to uppercase. Series.str.casefoldRemoves all case distinctions in the string. Examples >>> s = pd.Series(['lower', 'CAPITALS', 'this is a sentence', 'SwApCaSe']) >>> s 0 lower 1 CAPITALS 2 this is a sentence 3 SwApCaSe dtype: object >>> s.str.lower() 0 lower 1 capitals 2 this is a sentence 3 swapcase dtype: object >>> s.str.upper() 0 LOWER 1 CAPITALS 2 THIS IS A SENTENCE 3 SWAPCASE dtype: object >>> s.str.title() 0 Lower 1 Capitals 2 This Is A Sentence 3 Swapcase dtype: object >>> s.str.capitalize() 0 Lower 1 Capitals 2 This is a sentence 3 Swapcase dtype: object >>> s.str.swapcase() 0 LOWER 1 capitals 2 THIS IS A SENTENCE 3 sWaPcAsE dtype: object
reference/api/pandas.Series.str.lower.html
pandas.io.formats.style.Styler.template_string
pandas.io.formats.style.Styler.template_string
Styler.template_string = <Template 'string.tpl'>#
reference/api/pandas.io.formats.style.Styler.template_string.html
pandas.Index.array
`pandas.Index.array` The ExtensionArray of the data backing this Series or Index. ``` >>> pd.Series([1, 2, 3]).array <PandasArray> [1, 2, 3] Length: 3, dtype: int64 ```
Index.array[source]# The ExtensionArray of the data backing this Series or Index. Returns ExtensionArrayAn ExtensionArray of the values stored within. For extension types, this is the actual array. For NumPy native types, this is a thin (no copy) wrapper around numpy.ndarray. .array differs .values which may require converting the data to a different form. See also Index.to_numpySimilar method that always returns a NumPy array. Series.to_numpySimilar method that always returns a NumPy array. Notes This table lays out the different array types for each extension dtype within pandas. dtype array type category Categorical period PeriodArray interval IntervalArray IntegerNA IntegerArray string StringArray boolean BooleanArray datetime64[ns, tz] DatetimeArray For any 3rd-party extension types, the array type will be an ExtensionArray. For all remaining dtypes .array will be a arrays.NumpyExtensionArray wrapping the actual ndarray stored within. If you absolutely need a NumPy array (possibly with copying / coercing data), then use Series.to_numpy() instead. Examples For regular NumPy types like int, and float, a PandasArray is returned. >>> pd.Series([1, 2, 3]).array <PandasArray> [1, 2, 3] Length: 3, dtype: int64 For extension types, like Categorical, the actual ExtensionArray is returned >>> ser = pd.Series(pd.Categorical(['a', 'b', 'a'])) >>> ser.array ['a', 'b', 'a'] Categories (2, object): ['a', 'b']
reference/api/pandas.Index.array.html
pandas.tseries.offsets.BYearEnd.apply
pandas.tseries.offsets.BYearEnd.apply
BYearEnd.apply()#
reference/api/pandas.tseries.offsets.BYearEnd.apply.html
pandas.tseries.offsets.Hour.is_year_end
`pandas.tseries.offsets.Hour.is_year_end` Return boolean whether a timestamp occurs on the year end. ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_year_end(ts) False ```
Hour.is_year_end()# Return boolean whether a timestamp occurs on the year end. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_year_end(ts) False
reference/api/pandas.tseries.offsets.Hour.is_year_end.html
pandas.DataFrame.align
`pandas.DataFrame.align` Align two objects on their axes with the specified join method. Join method is specified for each axis Index. ``` >>> df = pd.DataFrame( ... [[1, 2, 3, 4], [6, 7, 8, 9]], columns=["D", "B", "E", "A"], index=[1, 2] ... ) >>> other = pd.DataFrame( ... [[10, 20, 30, 40], [60, 70, 80, 90], [600, 700, 800, 900]], ... columns=["A", "B", "C", "D"], ... index=[2, 3, 4], ... ) >>> df D B E A 1 1 2 3 4 2 6 7 8 9 >>> other A B C D 2 10 20 30 40 3 60 70 80 90 4 600 700 800 900 ```
DataFrame.align(other, join='outer', axis=None, level=None, copy=True, fill_value=None, method=None, limit=None, fill_axis=0, broadcast_axis=None)[source]# Align two objects on their axes with the specified join method. Join method is specified for each axis Index. Parameters otherDataFrame or Series join{‘outer’, ‘inner’, ‘left’, ‘right’}, default ‘outer’ axisallowed axis of the other object, default NoneAlign on index (0), columns (1), or both (None). levelint or level name, default NoneBroadcast across a level, matching Index values on the passed MultiIndex level. copybool, default TrueAlways returns new objects. If copy=False and no reindexing is required then original objects are returned. fill_valuescalar, default np.NaNValue to use for missing values. Defaults to NaN, but can be any “compatible” value. method{‘backfill’, ‘bfill’, ‘pad’, ‘ffill’, None}, default NoneMethod to use for filling holes in reindexed Series: pad / ffill: propagate last valid observation forward to next valid. backfill / bfill: use NEXT valid observation to fill gap. limitint, default NoneIf method is specified, this is the maximum number of consecutive NaN values to forward/backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. If method is not specified, this is the maximum number of entries along the entire axis where NaNs will be filled. Must be greater than 0 if not None. fill_axis{0 or ‘index’, 1 or ‘columns’}, default 0Filling axis, method and limit. broadcast_axis{0 or ‘index’, 1 or ‘columns’}, default NoneBroadcast values along this axis, if aligning two objects of different dimensions. Returns (left, right)(DataFrame, type of other)Aligned objects. Examples >>> df = pd.DataFrame( ... [[1, 2, 3, 4], [6, 7, 8, 9]], columns=["D", "B", "E", "A"], index=[1, 2] ... ) >>> other = pd.DataFrame( ... [[10, 20, 30, 40], [60, 70, 80, 90], [600, 700, 800, 900]], ... columns=["A", "B", "C", "D"], ... index=[2, 3, 4], ... ) >>> df D B E A 1 1 2 3 4 2 6 7 8 9 >>> other A B C D 2 10 20 30 40 3 60 70 80 90 4 600 700 800 900 Align on columns: >>> left, right = df.align(other, join="outer", axis=1) >>> left A B C D E 1 4 2 NaN 1 3 2 9 7 NaN 6 8 >>> right A B C D E 2 10 20 30 40 NaN 3 60 70 80 90 NaN 4 600 700 800 900 NaN We can also align on the index: >>> left, right = df.align(other, join="outer", axis=0) >>> left D B E A 1 1.0 2.0 3.0 4.0 2 6.0 7.0 8.0 9.0 3 NaN NaN NaN NaN 4 NaN NaN NaN NaN >>> right A B C D 1 NaN NaN NaN NaN 2 10.0 20.0 30.0 40.0 3 60.0 70.0 80.0 90.0 4 600.0 700.0 800.0 900.0 Finally, the default axis=None will align on both index and columns: >>> left, right = df.align(other, join="outer", axis=None) >>> left A B C D E 1 4.0 2.0 NaN 1.0 3.0 2 9.0 7.0 NaN 6.0 8.0 3 NaN NaN NaN NaN NaN 4 NaN NaN NaN NaN NaN >>> right A B C D E 1 NaN NaN NaN NaN NaN 2 10.0 20.0 30.0 40.0 NaN 3 60.0 70.0 80.0 90.0 NaN 4 600.0 700.0 800.0 900.0 NaN
reference/api/pandas.DataFrame.align.html
pandas.tseries.offsets.LastWeekOfMonth.is_on_offset
`pandas.tseries.offsets.LastWeekOfMonth.is_on_offset` Return boolean whether a timestamp intersects with this frequency. ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Day(1) >>> freq.is_on_offset(ts) True ```
LastWeekOfMonth.is_on_offset()# Return boolean whether a timestamp intersects with this frequency. Parameters dtdatetime.datetimeTimestamp to check intersections with frequency. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Day(1) >>> freq.is_on_offset(ts) True >>> ts = pd.Timestamp(2022, 8, 6) >>> ts.day_name() 'Saturday' >>> freq = pd.offsets.BusinessDay(1) >>> freq.is_on_offset(ts) False
reference/api/pandas.tseries.offsets.LastWeekOfMonth.is_on_offset.html
pandas.tseries.offsets.MonthEnd.n
pandas.tseries.offsets.MonthEnd.n
MonthEnd.n#
reference/api/pandas.tseries.offsets.MonthEnd.n.html
pandas.tseries.offsets.BusinessHour.offset
`pandas.tseries.offsets.BusinessHour.offset` Alias for self._offset.
BusinessHour.offset# Alias for self._offset.
reference/api/pandas.tseries.offsets.BusinessHour.offset.html
pandas.CategoricalIndex.remove_unused_categories
`pandas.CategoricalIndex.remove_unused_categories` Remove categories which are not used. Whether or not to drop unused categories inplace or return a copy of this categorical with unused categories dropped. ``` >>> c = pd.Categorical(['a', 'c', 'b', 'c', 'd']) >>> c ['a', 'c', 'b', 'c', 'd'] Categories (4, object): ['a', 'b', 'c', 'd'] ```
CategoricalIndex.remove_unused_categories(*args, **kwargs)[source]# Remove categories which are not used. Parameters inplacebool, default FalseWhether or not to drop unused categories inplace or return a copy of this categorical with unused categories dropped. Deprecated since version 1.2.0. Returns catCategorical or NoneCategorical with unused categories dropped or None if inplace=True. See also rename_categoriesRename categories. reorder_categoriesReorder categories. add_categoriesAdd new categories. remove_categoriesRemove the specified categories. set_categoriesSet the categories to the specified ones. Examples >>> c = pd.Categorical(['a', 'c', 'b', 'c', 'd']) >>> c ['a', 'c', 'b', 'c', 'd'] Categories (4, object): ['a', 'b', 'c', 'd'] >>> c[2] = 'a' >>> c[4] = 'c' >>> c ['a', 'c', 'a', 'c', 'c'] Categories (4, object): ['a', 'b', 'c', 'd'] >>> c.remove_unused_categories() ['a', 'c', 'a', 'c', 'c'] Categories (2, object): ['a', 'c']
reference/api/pandas.CategoricalIndex.remove_unused_categories.html
pandas.errors.DataError
`pandas.errors.DataError` Exceptionn raised when performing an operation on non-numerical data.
exception pandas.errors.DataError[source]# Exceptionn raised when performing an operation on non-numerical data. For example, calling ohlc on a non-numerical column or a function on a rolling window.
reference/api/pandas.errors.DataError.html
pandas.Index.searchsorted
`pandas.Index.searchsorted` Find indices where elements should be inserted to maintain order. ``` >>> ser = pd.Series([1, 2, 3]) >>> ser 0 1 1 2 2 3 dtype: int64 ```
Index.searchsorted(value, side='left', sorter=None)[source]# Find indices where elements should be inserted to maintain order. Find the indices into a sorted Index self such that, if the corresponding elements in value were inserted before the indices, the order of self would be preserved. Note The Index must be monotonically sorted, otherwise wrong locations will likely be returned. Pandas does not check this for you. Parameters valuearray-like or scalarValues to insert into self. side{‘left’, ‘right’}, optionalIf ‘left’, the index of the first suitable location found is given. If ‘right’, return the last such index. If there is no suitable index, return either 0 or N (where N is the length of self). sorter1-D array-like, optionalOptional array of integer indices that sort self into ascending order. They are typically the result of np.argsort. Returns int or array of intA scalar or array of insertion points with the same shape as value. See also sort_valuesSort by the values along either axis. numpy.searchsortedSimilar method from NumPy. Notes Binary search is used to find the required insertion points. Examples >>> ser = pd.Series([1, 2, 3]) >>> ser 0 1 1 2 2 3 dtype: int64 >>> ser.searchsorted(4) 3 >>> ser.searchsorted([0, 4]) array([0, 3]) >>> ser.searchsorted([1, 3], side='left') array([0, 2]) >>> ser.searchsorted([1, 3], side='right') array([1, 3]) >>> ser = pd.Series(pd.to_datetime(['3/11/2000', '3/12/2000', '3/13/2000'])) >>> ser 0 2000-03-11 1 2000-03-12 2 2000-03-13 dtype: datetime64[ns] >>> ser.searchsorted('3/14/2000') 3 >>> ser = pd.Categorical( ... ['apple', 'bread', 'bread', 'cheese', 'milk'], ordered=True ... ) >>> ser ['apple', 'bread', 'bread', 'cheese', 'milk'] Categories (4, object): ['apple' < 'bread' < 'cheese' < 'milk'] >>> ser.searchsorted('bread') 1 >>> ser.searchsorted(['bread'], side='right') array([3]) If the values are not monotonically sorted, wrong locations may be returned: >>> ser = pd.Series([2, 1, 3]) >>> ser 0 2 1 1 2 3 dtype: int64 >>> ser.searchsorted(1) 0 # wrong result, correct would be 1
reference/api/pandas.Index.searchsorted.html
pandas.tseries.offsets.BusinessMonthBegin.__call__
`pandas.tseries.offsets.BusinessMonthBegin.__call__` Call self as a function.
BusinessMonthBegin.__call__(*args, **kwargs)# Call self as a function.
reference/api/pandas.tseries.offsets.BusinessMonthBegin.__call__.html
pandas.Series.str.isspace
`pandas.Series.str.isspace` Check whether all characters in each string are whitespace. This is equivalent to running the Python string method str.isspace() for each element of the Series/Index. If a string has zero characters, False is returned for that check. ``` >>> s1 = pd.Series(['one', 'one1', '1', '']) ```
Series.str.isspace()[source]# Check whether all characters in each string are whitespace. This is equivalent to running the Python string method str.isspace() for each element of the Series/Index. If a string has zero characters, False is returned for that check. Returns Series or Index of boolSeries or Index of boolean values with the same length as the original Series/Index. See also Series.str.isalphaCheck whether all characters are alphabetic. Series.str.isnumericCheck whether all characters are numeric. Series.str.isalnumCheck whether all characters are alphanumeric. Series.str.isdigitCheck whether all characters are digits. Series.str.isdecimalCheck whether all characters are decimal. Series.str.isspaceCheck whether all characters are whitespace. Series.str.islowerCheck whether all characters are lowercase. Series.str.isupperCheck whether all characters are uppercase. Series.str.istitleCheck whether all characters are titlecase. Examples Checks for Alphabetic and Numeric Characters >>> s1 = pd.Series(['one', 'one1', '1', '']) >>> s1.str.isalpha() 0 True 1 False 2 False 3 False dtype: bool >>> s1.str.isnumeric() 0 False 1 False 2 True 3 False dtype: bool >>> s1.str.isalnum() 0 True 1 True 2 True 3 False dtype: bool Note that checks against characters mixed with any additional punctuation or whitespace will evaluate to false for an alphanumeric check. >>> s2 = pd.Series(['A B', '1.5', '3,000']) >>> s2.str.isalnum() 0 False 1 False 2 False dtype: bool More Detailed Checks for Numeric Characters There are several different but overlapping sets of numeric characters that can be checked for. >>> s3 = pd.Series(['23', '³', '⅕', '']) The s3.str.isdecimal method checks for characters used to form numbers in base 10. >>> s3.str.isdecimal() 0 True 1 False 2 False 3 False dtype: bool The s.str.isdigit method is the same as s3.str.isdecimal but also includes special digits, like superscripted and subscripted digits in unicode. >>> s3.str.isdigit() 0 True 1 True 2 False 3 False dtype: bool The s.str.isnumeric method is the same as s3.str.isdigit but also includes other characters that can represent quantities such as unicode fractions. >>> s3.str.isnumeric() 0 True 1 True 2 True 3 False dtype: bool Checks for Whitespace >>> s4 = pd.Series([' ', '\t\r\n ', '']) >>> s4.str.isspace() 0 True 1 True 2 False dtype: bool Checks for Character Case >>> s5 = pd.Series(['leopard', 'Golden Eagle', 'SNAKE', '']) >>> s5.str.islower() 0 True 1 False 2 False 3 False dtype: bool >>> s5.str.isupper() 0 False 1 False 2 True 3 False dtype: bool The s5.str.istitle method checks for whether all words are in title case (whether only the first letter of each word is capitalized). Words are assumed to be as any sequence of non-numeric characters separated by whitespace characters. >>> s5.str.istitle() 0 False 1 True 2 False 3 False dtype: bool
reference/api/pandas.Series.str.isspace.html
pandas.tseries.offsets.BYearEnd.apply
pandas.tseries.offsets.BYearEnd.apply
BYearEnd.apply()#
reference/api/pandas.tseries.offsets.BYearEnd.apply.html
pandas.tseries.offsets.BYearEnd.month
pandas.tseries.offsets.BYearEnd.month
BYearEnd.month#
reference/api/pandas.tseries.offsets.BYearEnd.month.html
pandas.tseries.offsets.CustomBusinessMonthBegin.nanos
pandas.tseries.offsets.CustomBusinessMonthBegin.nanos
CustomBusinessMonthBegin.nanos#
reference/api/pandas.tseries.offsets.CustomBusinessMonthBegin.nanos.html
pandas.plotting.deregister_matplotlib_converters
`pandas.plotting.deregister_matplotlib_converters` Remove pandas formatters and converters.
pandas.plotting.deregister_matplotlib_converters()[source]# Remove pandas formatters and converters. Removes the custom converters added by register(). This attempts to set the state of the registry back to the state before pandas registered its own units. Converters for pandas’ own types like Timestamp and Period are removed completely. Converters for types pandas overwrites, like datetime.datetime, are restored to their original value. See also register_matplotlib_convertersRegister pandas formatters and converters with matplotlib.
reference/api/pandas.plotting.deregister_matplotlib_converters.html
pandas.Series.str
`pandas.Series.str` Vectorized string functions for Series and Index. ``` >>> s = pd.Series(["A_Str_Series"]) >>> s 0 A_Str_Series dtype: object ```
Series.str()[source]# Vectorized string functions for Series and Index. NAs stay NA unless handled otherwise by a particular method. Patterned after Python’s string methods, with some inspiration from R’s stringr package. Examples >>> s = pd.Series(["A_Str_Series"]) >>> s 0 A_Str_Series dtype: object >>> s.str.split("_") 0 [A, Str, Series] dtype: object >>> s.str.replace("_", "") 0 AStrSeries dtype: object
reference/api/pandas.Series.str.html
pandas.tseries.offsets.YearEnd.isAnchored
pandas.tseries.offsets.YearEnd.isAnchored
YearEnd.isAnchored()#
reference/api/pandas.tseries.offsets.YearEnd.isAnchored.html
pandas.TimedeltaIndex.ceil
`pandas.TimedeltaIndex.ceil` Perform ceil operation on the data to the specified freq. The frequency level to ceil the index to. Must be a fixed frequency like ‘S’ (second) not ‘ME’ (month end). See frequency aliases for a list of possible freq values. ``` >>> rng = pd.date_range('1/1/2018 11:59:00', periods=3, freq='min') >>> rng DatetimeIndex(['2018-01-01 11:59:00', '2018-01-01 12:00:00', '2018-01-01 12:01:00'], dtype='datetime64[ns]', freq='T') >>> rng.ceil('H') DatetimeIndex(['2018-01-01 12:00:00', '2018-01-01 12:00:00', '2018-01-01 13:00:00'], dtype='datetime64[ns]', freq=None) ```
TimedeltaIndex.ceil(*args, **kwargs)[source]# Perform ceil operation on the data to the specified freq. Parameters freqstr or OffsetThe frequency level to ceil the index to. Must be a fixed frequency like ‘S’ (second) not ‘ME’ (month end). See frequency aliases for a list of possible freq values. ambiguous‘infer’, bool-ndarray, ‘NaT’, default ‘raise’Only relevant for DatetimeIndex: ‘infer’ will attempt to infer fall dst-transition hours based on order bool-ndarray where True signifies a DST time, False designates a non-DST time (note that this flag is only applicable for ambiguous times) ‘NaT’ will return NaT where there are ambiguous times ‘raise’ will raise an AmbiguousTimeError if there are ambiguous times. nonexistent‘shift_forward’, ‘shift_backward’, ‘NaT’, timedelta, default ‘raise’A nonexistent time does not exist in a particular timezone where clocks moved forward due to DST. ‘shift_forward’ will shift the nonexistent time forward to the closest existing time ‘shift_backward’ will shift the nonexistent time backward to the closest existing time ‘NaT’ will return NaT where there are nonexistent times timedelta objects will shift nonexistent times by the timedelta ‘raise’ will raise an NonExistentTimeError if there are nonexistent times. Returns DatetimeIndex, TimedeltaIndex, or SeriesIndex of the same type for a DatetimeIndex or TimedeltaIndex, or a Series with the same index for a Series. Raises ValueError if the freq cannot be converted. Notes If the timestamps have a timezone, ceiling will take place relative to the local (“wall”) time and re-localized to the same timezone. When ceiling near daylight savings time, use nonexistent and ambiguous to control the re-localization behavior. Examples DatetimeIndex >>> rng = pd.date_range('1/1/2018 11:59:00', periods=3, freq='min') >>> rng DatetimeIndex(['2018-01-01 11:59:00', '2018-01-01 12:00:00', '2018-01-01 12:01:00'], dtype='datetime64[ns]', freq='T') >>> rng.ceil('H') DatetimeIndex(['2018-01-01 12:00:00', '2018-01-01 12:00:00', '2018-01-01 13:00:00'], dtype='datetime64[ns]', freq=None) Series >>> pd.Series(rng).dt.ceil("H") 0 2018-01-01 12:00:00 1 2018-01-01 12:00:00 2 2018-01-01 13:00:00 dtype: datetime64[ns] When rounding near a daylight savings time transition, use ambiguous or nonexistent to control how the timestamp should be re-localized. >>> rng_tz = pd.DatetimeIndex(["2021-10-31 01:30:00"], tz="Europe/Amsterdam") >>> rng_tz.ceil("H", ambiguous=False) DatetimeIndex(['2021-10-31 02:00:00+01:00'], dtype='datetime64[ns, Europe/Amsterdam]', freq=None) >>> rng_tz.ceil("H", ambiguous=True) DatetimeIndex(['2021-10-31 02:00:00+02:00'], dtype='datetime64[ns, Europe/Amsterdam]', freq=None)
reference/api/pandas.TimedeltaIndex.ceil.html
pandas.io.formats.style.Styler.to_latex
`pandas.io.formats.style.Styler.to_latex` Write Styler to a file, buffer or string in LaTeX format. ``` >>> df = pd.DataFrame([[1,2], [3,4]]) >>> s = df.style.highlight_max(axis=None, ... props='background-color:red; font-weight:bold;') >>> s.to_html() ```
Styler.to_latex(buf=None, *, column_format=None, position=None, position_float=None, hrules=None, clines=None, label=None, caption=None, sparse_index=None, sparse_columns=None, multirow_align=None, multicol_align=None, siunitx=False, environment=None, encoding=None, convert_css=False)[source]# Write Styler to a file, buffer or string in LaTeX format. New in version 1.3.0. Parameters bufstr, path object, file-like object, or None, default NoneString, path object (implementing os.PathLike[str]), or file-like object implementing a string write() function. If None, the result is returned as a string. column_formatstr, optionalThe LaTeX column specification placed in location: \begin{tabular}{<column_format>} Defaults to ‘l’ for index and non-numeric data columns, and, for numeric data columns, to ‘r’ by default, or ‘S’ if siunitx is True. positionstr, optionalThe LaTeX positional argument (e.g. ‘h!’) for tables, placed in location: \\begin{table}[<position>]. position_float{“centering”, “raggedleft”, “raggedright”}, optionalThe LaTeX float command placed in location: \begin{table}[<position>] \<position_float> Cannot be used if environment is “longtable”. hrulesboolSet to True to add \toprule, \midrule and \bottomrule from the {booktabs} LaTeX package. Defaults to pandas.options.styler.latex.hrules, which is False. Changed in version 1.4.0. clinesstr, optionalUse to control adding \cline commands for the index labels separation. Possible values are: None: no cline commands are added (default). “all;data”: a cline is added for every index value extending the width of the table, including data entries. “all;index”: as above with lines extending only the width of the index entries. “skip-last;data”: a cline is added for each index value except the last level (which is never sparsified), extending the widtn of the table. “skip-last;index”: as above with lines extending only the width of the index entries. New in version 1.4.0. labelstr, optionalThe LaTeX label included as: \label{<label>}. This is used with \ref{<label>} in the main .tex file. captionstr, tuple, optionalIf string, the LaTeX table caption included as: \caption{<caption>}. If tuple, i.e (“full caption”, “short caption”), the caption included as: \caption[<caption[1]>]{<caption[0]>}. sparse_indexbool, optionalWhether to sparsify the display of a hierarchical index. Setting to False will display each explicit level element in a hierarchical key for each row. Defaults to pandas.options.styler.sparse.index, which is True. sparse_columnsbool, optionalWhether to sparsify the display of a hierarchical index. Setting to False will display each explicit level element in a hierarchical key for each column. Defaults to pandas.options.styler.sparse.columns, which is True. multirow_align{“c”, “t”, “b”, “naive”}, optionalIf sparsifying hierarchical MultiIndexes whether to align text centrally, at the top or bottom using the multirow package. If not given defaults to pandas.options.styler.latex.multirow_align, which is “c”. If “naive” is given renders without multirow. Changed in version 1.4.0. multicol_align{“r”, “c”, “l”, “naive-l”, “naive-r”}, optionalIf sparsifying hierarchical MultiIndex columns whether to align text at the left, centrally, or at the right. If not given defaults to pandas.options.styler.latex.multicol_align, which is “r”. If a naive option is given renders without multicol. Pipe decorators can also be added to non-naive values to draw vertical rules, e.g. “|r” will draw a rule on the left side of right aligned merged cells. Changed in version 1.4.0. siunitxbool, default FalseSet to True to structure LaTeX compatible with the {siunitx} package. environmentstr, optionalIf given, the environment that will replace ‘table’ in \\begin{table}. If ‘longtable’ is specified then a more suitable template is rendered. If not given defaults to pandas.options.styler.latex.environment, which is None. New in version 1.4.0. encodingstr, optionalCharacter encoding setting. Defaults to pandas.options.styler.render.encoding, which is “utf-8”. convert_cssbool, default FalseConvert simple cell-styles from CSS to LaTeX format. Any CSS not found in conversion table is dropped. A style can be forced by adding option –latex. See notes. Returns str or NoneIf buf is None, returns the result as a string. Otherwise returns None. See also Styler.formatFormat the text display value of cells. Notes Latex Packages For the following features we recommend the following LaTeX inclusions: Feature Inclusion sparse columns none: included within default {tabular} environment sparse rows \usepackage{multirow} hrules \usepackage{booktabs} colors \usepackage[table]{xcolor} siunitx \usepackage{siunitx} bold (with siunitx) \usepackage{etoolbox} \robustify\bfseries \sisetup{detect-all = true} (within {document}) italic (with siunitx) \usepackage{etoolbox} \robustify\itshape \sisetup{detect-all = true} (within {document}) environment \usepackage{longtable} if arg is “longtable” | or any other relevant environment package hyperlinks \usepackage{hyperref} Cell Styles LaTeX styling can only be rendered if the accompanying styling functions have been constructed with appropriate LaTeX commands. All styling functionality is built around the concept of a CSS (<attribute>, <value>) pair (see Table Visualization), and this should be replaced by a LaTeX (<command>, <options>) approach. Each cell will be styled individually using nested LaTeX commands with their accompanied options. For example the following code will highlight and bold a cell in HTML-CSS: >>> df = pd.DataFrame([[1,2], [3,4]]) >>> s = df.style.highlight_max(axis=None, ... props='background-color:red; font-weight:bold;') >>> s.to_html() The equivalent using LaTeX only commands is the following: >>> s = df.style.highlight_max(axis=None, ... props='cellcolor:{red}; bfseries: ;') >>> s.to_latex() Internally these structured LaTeX (<command>, <options>) pairs are translated to the display_value with the default structure: \<command><options> <display_value>. Where there are multiple commands the latter is nested recursively, so that the above example highlighed cell is rendered as \cellcolor{red} \bfseries 4. Occasionally this format does not suit the applied command, or combination of LaTeX packages that is in use, so additional flags can be added to the <options>, within the tuple, to result in different positions of required braces (the default being the same as --nowrap): Tuple Format Output Structure (<command>,<options>) \<command><options> <display_value> (<command>,<options> --nowrap) \<command><options> <display_value> (<command>,<options> --rwrap) \<command><options>{<display_value>} (<command>,<options> --wrap) {\<command><options> <display_value>} (<command>,<options> --lwrap) {\<command><options>} <display_value> (<command>,<options> --dwrap) {\<command><options>}{<display_value>} For example the textbf command for font-weight should always be used with –rwrap so ('textbf', '--rwrap') will render a working cell, wrapped with braces, as \textbf{<display_value>}. A more comprehensive example is as follows: >>> df = pd.DataFrame([[1, 2.2, "dogs"], [3, 4.4, "cats"], [2, 6.6, "cows"]], ... index=["ix1", "ix2", "ix3"], ... columns=["Integers", "Floats", "Strings"]) >>> s = df.style.highlight_max( ... props='cellcolor:[HTML]{FFFF00}; color:{red};' ... 'textit:--rwrap; textbf:--rwrap;' ... ) >>> s.to_latex() Table Styles Internally Styler uses its table_styles object to parse the column_format, position, position_float, and label input arguments. These arguments are added to table styles in the format: set_table_styles([ {"selector": "column_format", "props": f":{column_format};"}, {"selector": "position", "props": f":{position};"}, {"selector": "position_float", "props": f":{position_float};"}, {"selector": "label", "props": f":{{{label.replace(':','§')}}};"} ], overwrite=False) Exception is made for the hrules argument which, in fact, controls all three commands: toprule, bottomrule and midrule simultaneously. Instead of setting hrules to True, it is also possible to set each individual rule definition, by manually setting the table_styles, for example below we set a regular toprule, set an hline for bottomrule and exclude the midrule: set_table_styles([ {'selector': 'toprule', 'props': ':toprule;'}, {'selector': 'bottomrule', 'props': ':hline;'}, ], overwrite=False) If other commands are added to table styles they will be detected, and positioned immediately above the ‘\begin{tabular}’ command. For example to add odd and even row coloring, from the {colortbl} package, in format \rowcolors{1}{pink}{red}, use: set_table_styles([ {'selector': 'rowcolors', 'props': ':{1}{pink}{red};'} ], overwrite=False) A more comprehensive example using these arguments is as follows: >>> df.columns = pd.MultiIndex.from_tuples([ ... ("Numeric", "Integers"), ... ("Numeric", "Floats"), ... ("Non-Numeric", "Strings") ... ]) >>> df.index = pd.MultiIndex.from_tuples([ ... ("L0", "ix1"), ("L0", "ix2"), ("L1", "ix3") ... ]) >>> s = df.style.highlight_max( ... props='cellcolor:[HTML]{FFFF00}; color:{red}; itshape:; bfseries:;' ... ) >>> s.to_latex( ... column_format="rrrrr", position="h", position_float="centering", ... hrules=True, label="table:5", caption="Styled LaTeX Table", ... multirow_align="t", multicol_align="r" ... ) Formatting To format values Styler.format() should be used prior to calling Styler.to_latex, as well as other methods such as Styler.hide() for example: >>> s.clear() >>> s.table_styles = [] >>> s.caption = None >>> s.format({ ... ("Numeric", "Integers"): '\${}', ... ("Numeric", "Floats"): '{:.3f}', ... ("Non-Numeric", "Strings"): str.upper ... }) Numeric Non-Numeric Integers Floats Strings L0 ix1 $1 2.200 DOGS ix2 $3 4.400 CATS L1 ix3 $2 6.600 COWS >>> s.to_latex() \begin{tabular}{llrrl} {} & {} & \multicolumn{2}{r}{Numeric} & {Non-Numeric} \\ {} & {} & {Integers} & {Floats} & {Strings} \\ \multirow[c]{2}{*}{L0} & ix1 & \\$1 & 2.200 & DOGS \\ & ix2 & \$3 & 4.400 & CATS \\ L1 & ix3 & \$2 & 6.600 & COWS \\ \end{tabular} CSS Conversion This method can convert a Styler constructured with HTML-CSS to LaTeX using the following limited conversions. CSS Attribute CSS value LaTeX Command LaTeX Options font-weight bold bolder bfseries bfseries font-style italic oblique itshape slshape background-color red #fe01ea #f0e rgb(128,255,0) rgba(128,0,0,0.5) rgb(25%,255,50%) cellcolor {red}–lwrap [HTML]{FE01EA}–lwrap [HTML]{FF00EE}–lwrap [rgb]{0.5,1,0}–lwrap [rgb]{0.5,0,0}–lwrap [rgb]{0.25,1,0.5}–lwrap color red #fe01ea #f0e rgb(128,255,0) rgba(128,0,0,0.5) rgb(25%,255,50%) color {red} [HTML]{FE01EA} [HTML]{FF00EE} [rgb]{0.5,1,0} [rgb]{0.5,0,0} [rgb]{0.25,1,0.5} It is also possible to add user-defined LaTeX only styles to a HTML-CSS Styler using the --latex flag, and to add LaTeX parsing options that the converter will detect within a CSS-comment. >>> df = pd.DataFrame([[1]]) >>> df.style.set_properties( ... **{"font-weight": "bold /* --dwrap */", "Huge": "--latex--rwrap"} ... ).to_latex(convert_css=True) \begin{tabular}{lr} {} & {0} \\ 0 & {\bfseries}{\Huge{1}} \\ \end{tabular} Examples Below we give a complete step by step example adding some advanced features and noting some common gotchas. First we create the DataFrame and Styler as usual, including MultiIndex rows and columns, which allow for more advanced formatting options: >>> cidx = pd.MultiIndex.from_arrays([ ... ["Equity", "Equity", "Equity", "Equity", ... "Stats", "Stats", "Stats", "Stats", "Rating"], ... ["Energy", "Energy", "Consumer", "Consumer", "", "", "", "", ""], ... ["BP", "Shell", "H&M", "Unilever", ... "Std Dev", "Variance", "52w High", "52w Low", ""] ... ]) >>> iidx = pd.MultiIndex.from_arrays([ ... ["Equity", "Equity", "Equity", "Equity"], ... ["Energy", "Energy", "Consumer", "Consumer"], ... ["BP", "Shell", "H&M", "Unilever"] ... ]) >>> styler = pd.DataFrame([ ... [1, 0.8, 0.66, 0.72, 32.1678, 32.1678**2, 335.12, 240.89, "Buy"], ... [0.8, 1.0, 0.69, 0.79, 1.876, 1.876**2, 14.12, 19.78, "Hold"], ... [0.66, 0.69, 1.0, 0.86, 7, 7**2, 210.9, 140.6, "Buy"], ... [0.72, 0.79, 0.86, 1.0, 213.76, 213.76**2, 2807, 3678, "Sell"], ... ], columns=cidx, index=iidx).style Second we will format the display and, since our table is quite wide, will hide the repeated level-0 of the index: >>> styler.format(subset="Equity", precision=2) ... .format(subset="Stats", precision=1, thousands=",") ... .format(subset="Rating", formatter=str.upper) ... .format_index(escape="latex", axis=1) ... .format_index(escape="latex", axis=0) ... .hide(level=0, axis=0) Note that one of the string entries of the index and column headers is “H&M”. Without applying the escape=”latex” option to the format_index method the resultant LaTeX will fail to render, and the error returned is quite difficult to debug. Using the appropriate escape the “&” is converted to “\&”. Thirdly we will apply some (CSS-HTML) styles to our object. We will use a builtin method and also define our own method to highlight the stock recommendation: >>> def rating_color(v): ... if v == "Buy": color = "#33ff85" ... elif v == "Sell": color = "#ff5933" ... else: color = "#ffdd33" ... return f"color: {color}; font-weight: bold;" >>> styler.background_gradient(cmap="inferno", subset="Equity", vmin=0, vmax=1) ... .applymap(rating_color, subset="Rating") All the above styles will work with HTML (see below) and LaTeX upon conversion: However, we finally want to add one LaTeX only style (from the {graphicx} package), that is not easy to convert from CSS and pandas does not support it. Notice the –latex flag used here, as well as –rwrap to ensure this is formatted correctly and not ignored upon conversion. >>> styler.applymap_index( ... lambda v: "rotatebox:{45}--rwrap--latex;", level=2, axis=1 ... ) Finally we render our LaTeX adding in other options as required: >>> styler.to_latex( ... caption="Selected stock correlation and simple statistics.", ... clines="skip-last;data", ... convert_css=True, ... position_float="centering", ... multicol_align="|c|", ... hrules=True, ... ) \begin{table} \centering \caption{Selected stock correlation and simple statistics.} \begin{tabular}{llrrrrrrrrl} \toprule & & \multicolumn{4}{|c|}{Equity} & \multicolumn{4}{|c|}{Stats} & Rating \\ & & \multicolumn{2}{|c|}{Energy} & \multicolumn{2}{|c|}{Consumer} & \multicolumn{4}{|c|}{} & \\ & & \rotatebox{45}{BP} & \rotatebox{45}{Shell} & \rotatebox{45}{H\&M} & \rotatebox{45}{Unilever} & \rotatebox{45}{Std Dev} & \rotatebox{45}{Variance} & \rotatebox{45}{52w High} & \rotatebox{45}{52w Low} & \rotatebox{45}{} \\ \midrule \multirow[c]{2}{*}{Energy} & BP & {\cellcolor[HTML]{FCFFA4}} \color[HTML]{000000} 1.00 & {\cellcolor[HTML]{FCA50A}} \color[HTML]{000000} 0.80 & {\cellcolor[HTML]{EB6628}} \color[HTML]{F1F1F1} 0.66 & {\cellcolor[HTML]{F68013}} \color[HTML]{F1F1F1} 0.72 & 32.2 & 1,034.8 & 335.1 & 240.9 & \color[HTML]{33FF85} \bfseries BUY \\ & Shell & {\cellcolor[HTML]{FCA50A}} \color[HTML]{000000} 0.80 & {\cellcolor[HTML]{FCFFA4}} \color[HTML]{000000} 1.00 & {\cellcolor[HTML]{F1731D}} \color[HTML]{F1F1F1} 0.69 & {\cellcolor[HTML]{FCA108}} \color[HTML]{000000} 0.79 & 1.9 & 3.5 & 14.1 & 19.8 & \color[HTML]{FFDD33} \bfseries HOLD \\ \cline{1-11} \multirow[c]{2}{*}{Consumer} & H\&M & {\cellcolor[HTML]{EB6628}} \color[HTML]{F1F1F1} 0.66 & {\cellcolor[HTML]{F1731D}} \color[HTML]{F1F1F1} 0.69 & {\cellcolor[HTML]{FCFFA4}} \color[HTML]{000000} 1.00 & {\cellcolor[HTML]{FAC42A}} \color[HTML]{000000} 0.86 & 7.0 & 49.0 & 210.9 & 140.6 & \color[HTML]{33FF85} \bfseries BUY \\ & Unilever & {\cellcolor[HTML]{F68013}} \color[HTML]{F1F1F1} 0.72 & {\cellcolor[HTML]{FCA108}} \color[HTML]{000000} 0.79 & {\cellcolor[HTML]{FAC42A}} \color[HTML]{000000} 0.86 & {\cellcolor[HTML]{FCFFA4}} \color[HTML]{000000} 1.00 & 213.8 & 45,693.3 & 2,807.0 & 3,678.0 & \color[HTML]{FF5933} \bfseries SELL \\ \cline{1-11} \bottomrule \end{tabular} \end{table}
reference/api/pandas.io.formats.style.Styler.to_latex.html
pandas.tseries.offsets.MonthEnd.base
`pandas.tseries.offsets.MonthEnd.base` Returns a copy of the calling offset object with n=1 and all other attributes equal.
MonthEnd.base# Returns a copy of the calling offset object with n=1 and all other attributes equal.
reference/api/pandas.tseries.offsets.MonthEnd.base.html
pandas.tseries.offsets.BYearBegin.kwds
`pandas.tseries.offsets.BYearBegin.kwds` Return a dict of extra parameters for the offset. ``` >>> pd.DateOffset(5).kwds {} ```
BYearBegin.kwds# Return a dict of extra parameters for the offset. Examples >>> pd.DateOffset(5).kwds {} >>> pd.offsets.FY5253Quarter().kwds {'weekday': 0, 'startingMonth': 1, 'qtr_with_extra_week': 1, 'variation': 'nearest'}
reference/api/pandas.tseries.offsets.BYearBegin.kwds.html
pandas.tseries.offsets.CustomBusinessDay.is_year_start
`pandas.tseries.offsets.CustomBusinessDay.is_year_start` Return boolean whether a timestamp occurs on the year start. Examples ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_year_start(ts) True ```
CustomBusinessDay.is_year_start()# Return boolean whether a timestamp occurs on the year start. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_year_start(ts) True
reference/api/pandas.tseries.offsets.CustomBusinessDay.is_year_start.html
pandas.PeriodIndex.day_of_week
`pandas.PeriodIndex.day_of_week` The day of the week with Monday=0, Sunday=6.
property PeriodIndex.day_of_week[source]# The day of the week with Monday=0, Sunday=6.
reference/api/pandas.PeriodIndex.day_of_week.html
pandas.PeriodIndex.start_time
`pandas.PeriodIndex.start_time` Get the Timestamp for the start of the period. See also ``` >>> period = pd.Period('2012-1-1', freq='D') >>> period Period('2012-01-01', 'D') ```
property PeriodIndex.start_time[source]# Get the Timestamp for the start of the period. Returns Timestamp See also Period.end_timeReturn the end Timestamp. Period.dayofyearReturn the day of year. Period.daysinmonthReturn the days in that month. Period.dayofweekReturn the day of the week. Examples >>> period = pd.Period('2012-1-1', freq='D') >>> period Period('2012-01-01', 'D') >>> period.start_time Timestamp('2012-01-01 00:00:00') >>> period.end_time Timestamp('2012-01-01 23:59:59.999999999')
reference/api/pandas.PeriodIndex.start_time.html
pandas.arrays.IntervalArray.mid
`pandas.arrays.IntervalArray.mid` Return the midpoint of each Interval in the IntervalArray as an Index.
property IntervalArray.mid[source]# Return the midpoint of each Interval in the IntervalArray as an Index.
reference/api/pandas.arrays.IntervalArray.mid.html
pandas.PeriodIndex.month
`pandas.PeriodIndex.month` The month as January=1, December=12.
property PeriodIndex.month[source]# The month as January=1, December=12.
reference/api/pandas.PeriodIndex.month.html
pandas.tseries.offsets.FY5253.variation
pandas.tseries.offsets.FY5253.variation
FY5253.variation#
reference/api/pandas.tseries.offsets.FY5253.variation.html
pandas.Categorical.codes
`pandas.Categorical.codes` The category codes of this categorical.
property Categorical.codes[source]# The category codes of this categorical. Codes are an array of integers which are the positions of the actual values in the categories array. There is no setter, use the other categorical methods and the normal item setter to change values in the categorical. Returns ndarray[int]A non-writable view of the codes array.
reference/api/pandas.Categorical.codes.html
pandas.Series.interpolate
`pandas.Series.interpolate` Fill NaN values using an interpolation method. ``` >>> s = pd.Series([0, 1, np.nan, 3]) >>> s 0 0.0 1 1.0 2 NaN 3 3.0 dtype: float64 >>> s.interpolate() 0 0.0 1 1.0 2 2.0 3 3.0 dtype: float64 ```
Series.interpolate(method='linear', *, axis=0, limit=None, inplace=False, limit_direction=None, limit_area=None, downcast=None, **kwargs)[source]# Fill NaN values using an interpolation method. Please note that only method='linear' is supported for DataFrame/Series with a MultiIndex. Parameters methodstr, default ‘linear’Interpolation technique to use. One of: ‘linear’: Ignore the index and treat the values as equally spaced. This is the only method supported on MultiIndexes. ‘time’: Works on daily and higher resolution data to interpolate given length of interval. ‘index’, ‘values’: use the actual numerical values of the index. ‘pad’: Fill in NaNs using existing values. ‘nearest’, ‘zero’, ‘slinear’, ‘quadratic’, ‘cubic’, ‘spline’, ‘barycentric’, ‘polynomial’: Passed to scipy.interpolate.interp1d. These methods use the numerical values of the index. Both ‘polynomial’ and ‘spline’ require that you also specify an order (int), e.g. df.interpolate(method='polynomial', order=5). ‘krogh’, ‘piecewise_polynomial’, ‘spline’, ‘pchip’, ‘akima’, ‘cubicspline’: Wrappers around the SciPy interpolation methods of similar names. See Notes. ‘from_derivatives’: Refers to scipy.interpolate.BPoly.from_derivatives which replaces ‘piecewise_polynomial’ interpolation method in scipy 0.18. axis{{0 or ‘index’, 1 or ‘columns’, None}}, default NoneAxis to interpolate along. For Series this parameter is unused and defaults to 0. limitint, optionalMaximum number of consecutive NaNs to fill. Must be greater than 0. inplacebool, default FalseUpdate the data in place if possible. limit_direction{{‘forward’, ‘backward’, ‘both’}}, OptionalConsecutive NaNs will be filled in this direction. If limit is specified: If ‘method’ is ‘pad’ or ‘ffill’, ‘limit_direction’ must be ‘forward’. If ‘method’ is ‘backfill’ or ‘bfill’, ‘limit_direction’ must be ‘backwards’. If ‘limit’ is not specified: If ‘method’ is ‘backfill’ or ‘bfill’, the default is ‘backward’ else the default is ‘forward’ Changed in version 1.1.0: raises ValueError if limit_direction is ‘forward’ or ‘both’ and method is ‘backfill’ or ‘bfill’. raises ValueError if limit_direction is ‘backward’ or ‘both’ and method is ‘pad’ or ‘ffill’. limit_area{{None, ‘inside’, ‘outside’}}, default NoneIf limit is specified, consecutive NaNs will be filled with this restriction. None: No fill restriction. ‘inside’: Only fill NaNs surrounded by valid values (interpolate). ‘outside’: Only fill NaNs outside valid values (extrapolate). downcastoptional, ‘infer’ or None, defaults to NoneDowncast dtypes if possible. ``**kwargs``optionalKeyword arguments to pass on to the interpolating function. Returns Series or DataFrame or NoneReturns the same object type as the caller, interpolated at some or all NaN values or None if inplace=True. See also fillnaFill missing values using different methods. scipy.interpolate.Akima1DInterpolatorPiecewise cubic polynomials (Akima interpolator). scipy.interpolate.BPoly.from_derivativesPiecewise polynomial in the Bernstein basis. scipy.interpolate.interp1dInterpolate a 1-D function. scipy.interpolate.KroghInterpolatorInterpolate polynomial (Krogh interpolator). scipy.interpolate.PchipInterpolatorPCHIP 1-d monotonic cubic interpolation. scipy.interpolate.CubicSplineCubic spline data interpolator. Notes The ‘krogh’, ‘piecewise_polynomial’, ‘spline’, ‘pchip’ and ‘akima’ methods are wrappers around the respective SciPy implementations of similar names. These use the actual numerical values of the index. For more information on their behavior, see the SciPy documentation. Examples Filling in NaN in a Series via linear interpolation. >>> s = pd.Series([0, 1, np.nan, 3]) >>> s 0 0.0 1 1.0 2 NaN 3 3.0 dtype: float64 >>> s.interpolate() 0 0.0 1 1.0 2 2.0 3 3.0 dtype: float64 Filling in NaN in a Series by padding, but filling at most two consecutive NaN at a time. >>> s = pd.Series([np.nan, "single_one", np.nan, ... "fill_two_more", np.nan, np.nan, np.nan, ... 4.71, np.nan]) >>> s 0 NaN 1 single_one 2 NaN 3 fill_two_more 4 NaN 5 NaN 6 NaN 7 4.71 8 NaN dtype: object >>> s.interpolate(method='pad', limit=2) 0 NaN 1 single_one 2 single_one 3 fill_two_more 4 fill_two_more 5 fill_two_more 6 NaN 7 4.71 8 4.71 dtype: object Filling in NaN in a Series via polynomial interpolation or splines: Both ‘polynomial’ and ‘spline’ methods require that you also specify an order (int). >>> s = pd.Series([0, 2, np.nan, 8]) >>> s.interpolate(method='polynomial', order=2) 0 0.000000 1 2.000000 2 4.666667 3 8.000000 dtype: float64 Fill the DataFrame forward (that is, going down) along each column using linear interpolation. Note how the last entry in column ‘a’ is interpolated differently, because there is no entry after it to use for interpolation. Note how the first entry in column ‘b’ remains NaN, because there is no entry before it to use for interpolation. >>> df = pd.DataFrame([(0.0, np.nan, -1.0, 1.0), ... (np.nan, 2.0, np.nan, np.nan), ... (2.0, 3.0, np.nan, 9.0), ... (np.nan, 4.0, -4.0, 16.0)], ... columns=list('abcd')) >>> df a b c d 0 0.0 NaN -1.0 1.0 1 NaN 2.0 NaN NaN 2 2.0 3.0 NaN 9.0 3 NaN 4.0 -4.0 16.0 >>> df.interpolate(method='linear', limit_direction='forward', axis=0) a b c d 0 0.0 NaN -1.0 1.0 1 1.0 2.0 -2.0 5.0 2 2.0 3.0 -3.0 9.0 3 2.0 4.0 -4.0 16.0 Using polynomial interpolation. >>> df['d'].interpolate(method='polynomial', order=2) 0 1.0 1 4.0 2 9.0 3 16.0 Name: d, dtype: float64
reference/api/pandas.Series.interpolate.html
pandas.Series.apply
`pandas.Series.apply` Invoke function on values of Series. ``` >>> s = pd.Series([20, 21, 12], ... index=['London', 'New York', 'Helsinki']) >>> s London 20 New York 21 Helsinki 12 dtype: int64 ```
Series.apply(func, convert_dtype=True, args=(), **kwargs)[source]# Invoke function on values of Series. Can be ufunc (a NumPy function that applies to the entire Series) or a Python function that only works on single values. Parameters funcfunctionPython function or NumPy ufunc to apply. convert_dtypebool, default TrueTry to find better dtype for elementwise function results. If False, leave as dtype=object. Note that the dtype is always preserved for some extension array dtypes, such as Categorical. argstuplePositional arguments passed to func after the series value. **kwargsAdditional keyword arguments passed to func. Returns Series or DataFrameIf func returns a Series object the result will be a DataFrame. See also Series.mapFor element-wise operations. Series.aggOnly perform aggregating type operations. Series.transformOnly perform transforming type operations. Notes Functions that mutate the passed object can produce unexpected behavior or errors and are not supported. See Mutating with User Defined Function (UDF) methods for more details. Examples Create a series with typical summer temperatures for each city. >>> s = pd.Series([20, 21, 12], ... index=['London', 'New York', 'Helsinki']) >>> s London 20 New York 21 Helsinki 12 dtype: int64 Square the values by defining a function and passing it as an argument to apply(). >>> def square(x): ... return x ** 2 >>> s.apply(square) London 400 New York 441 Helsinki 144 dtype: int64 Square the values by passing an anonymous function as an argument to apply(). >>> s.apply(lambda x: x ** 2) London 400 New York 441 Helsinki 144 dtype: int64 Define a custom function that needs additional positional arguments and pass these additional arguments using the args keyword. >>> def subtract_custom_value(x, custom_value): ... return x - custom_value >>> s.apply(subtract_custom_value, args=(5,)) London 15 New York 16 Helsinki 7 dtype: int64 Define a custom function that takes keyword arguments and pass these arguments to apply. >>> def add_custom_values(x, **kwargs): ... for month in kwargs: ... x += kwargs[month] ... return x >>> s.apply(add_custom_values, june=30, july=20, august=25) London 95 New York 96 Helsinki 87 dtype: int64 Use a function from the Numpy library. >>> s.apply(np.log) London 2.995732 New York 3.044522 Helsinki 2.484907 dtype: float64
reference/api/pandas.Series.apply.html
pandas.DataFrame.convert_dtypes
`pandas.DataFrame.convert_dtypes` Convert columns to best possible dtypes using dtypes supporting pd.NA. ``` >>> df = pd.DataFrame( ... { ... "a": pd.Series([1, 2, 3], dtype=np.dtype("int32")), ... "b": pd.Series(["x", "y", "z"], dtype=np.dtype("O")), ... "c": pd.Series([True, False, np.nan], dtype=np.dtype("O")), ... "d": pd.Series(["h", "i", np.nan], dtype=np.dtype("O")), ... "e": pd.Series([10, np.nan, 20], dtype=np.dtype("float")), ... "f": pd.Series([np.nan, 100.5, 200], dtype=np.dtype("float")), ... } ... ) ```
DataFrame.convert_dtypes(infer_objects=True, convert_string=True, convert_integer=True, convert_boolean=True, convert_floating=True)[source]# Convert columns to best possible dtypes using dtypes supporting pd.NA. New in version 1.0.0. Parameters infer_objectsbool, default TrueWhether object dtypes should be converted to the best possible types. convert_stringbool, default TrueWhether object dtypes should be converted to StringDtype(). convert_integerbool, default TrueWhether, if possible, conversion can be done to integer extension types. convert_booleanbool, defaults TrueWhether object dtypes should be converted to BooleanDtypes(). convert_floatingbool, defaults TrueWhether, if possible, conversion can be done to floating extension types. If convert_integer is also True, preference will be give to integer dtypes if the floats can be faithfully casted to integers. New in version 1.2.0. Returns Series or DataFrameCopy of input object with new dtype. See also infer_objectsInfer dtypes of objects. to_datetimeConvert argument to datetime. to_timedeltaConvert argument to timedelta. to_numericConvert argument to a numeric type. Notes By default, convert_dtypes will attempt to convert a Series (or each Series in a DataFrame) to dtypes that support pd.NA. By using the options convert_string, convert_integer, convert_boolean and convert_boolean, it is possible to turn off individual conversions to StringDtype, the integer extension types, BooleanDtype or floating extension types, respectively. For object-dtyped columns, if infer_objects is True, use the inference rules as during normal Series/DataFrame construction. Then, if possible, convert to StringDtype, BooleanDtype or an appropriate integer or floating extension type, otherwise leave as object. If the dtype is integer, convert to an appropriate integer extension type. If the dtype is numeric, and consists of all integers, convert to an appropriate integer extension type. Otherwise, convert to an appropriate floating extension type. Changed in version 1.2: Starting with pandas 1.2, this method also converts float columns to the nullable floating extension type. In the future, as new dtypes are added that support pd.NA, the results of this method will change to support those new dtypes. Examples >>> df = pd.DataFrame( ... { ... "a": pd.Series([1, 2, 3], dtype=np.dtype("int32")), ... "b": pd.Series(["x", "y", "z"], dtype=np.dtype("O")), ... "c": pd.Series([True, False, np.nan], dtype=np.dtype("O")), ... "d": pd.Series(["h", "i", np.nan], dtype=np.dtype("O")), ... "e": pd.Series([10, np.nan, 20], dtype=np.dtype("float")), ... "f": pd.Series([np.nan, 100.5, 200], dtype=np.dtype("float")), ... } ... ) Start with a DataFrame with default dtypes. >>> df a b c d e f 0 1 x True h 10.0 NaN 1 2 y False i NaN 100.5 2 3 z NaN NaN 20.0 200.0 >>> df.dtypes a int32 b object c object d object e float64 f float64 dtype: object Convert the DataFrame to use best possible dtypes. >>> dfn = df.convert_dtypes() >>> dfn a b c d e f 0 1 x True h 10 <NA> 1 2 y False i <NA> 100.5 2 3 z <NA> <NA> 20 200.0 >>> dfn.dtypes a Int32 b string c boolean d string e Int64 f Float64 dtype: object Start with a Series of strings and missing data represented by np.nan. >>> s = pd.Series(["a", "b", np.nan]) >>> s 0 a 1 b 2 NaN dtype: object Obtain a Series with dtype StringDtype. >>> s.convert_dtypes() 0 a 1 b 2 <NA> dtype: string
reference/api/pandas.DataFrame.convert_dtypes.html
pandas.tseries.offsets.MonthBegin.is_quarter_end
`pandas.tseries.offsets.MonthBegin.is_quarter_end` Return boolean whether a timestamp occurs on the quarter end. Examples ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_quarter_end(ts) False ```
MonthBegin.is_quarter_end()# Return boolean whether a timestamp occurs on the quarter end. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_quarter_end(ts) False
reference/api/pandas.tseries.offsets.MonthBegin.is_quarter_end.html
pandas.tseries.offsets.MonthBegin.apply
pandas.tseries.offsets.MonthBegin.apply
MonthBegin.apply()#
reference/api/pandas.tseries.offsets.MonthBegin.apply.html
pandas.Series.dt.day_of_week
`pandas.Series.dt.day_of_week` The day of the week with Monday=0, Sunday=6. Return the day of the week. It is assumed the week starts on Monday, which is denoted by 0 and ends on Sunday which is denoted by 6. This method is available on both Series with datetime values (using the dt accessor) or DatetimeIndex. ``` >>> s = pd.date_range('2016-12-31', '2017-01-08', freq='D').to_series() >>> s.dt.dayofweek 2016-12-31 5 2017-01-01 6 2017-01-02 0 2017-01-03 1 2017-01-04 2 2017-01-05 3 2017-01-06 4 2017-01-07 5 2017-01-08 6 Freq: D, dtype: int64 ```
Series.dt.day_of_week[source]# The day of the week with Monday=0, Sunday=6. Return the day of the week. It is assumed the week starts on Monday, which is denoted by 0 and ends on Sunday which is denoted by 6. This method is available on both Series with datetime values (using the dt accessor) or DatetimeIndex. Returns Series or IndexContaining integers indicating the day number. See also Series.dt.dayofweekAlias. Series.dt.weekdayAlias. Series.dt.day_nameReturns the name of the day of the week. Examples >>> s = pd.date_range('2016-12-31', '2017-01-08', freq='D').to_series() >>> s.dt.dayofweek 2016-12-31 5 2017-01-01 6 2017-01-02 0 2017-01-03 1 2017-01-04 2 2017-01-05 3 2017-01-06 4 2017-01-07 5 2017-01-08 6 Freq: D, dtype: int64
reference/api/pandas.Series.dt.day_of_week.html
pandas.core.window.ewm.ExponentialMovingWindow.mean
`pandas.core.window.ewm.ExponentialMovingWindow.mean` Calculate the ewm (exponential weighted moment) mean. Include only float, int, boolean columns.
ExponentialMovingWindow.mean(numeric_only=False, *args, engine=None, engine_kwargs=None, **kwargs)[source]# Calculate the ewm (exponential weighted moment) mean. Parameters numeric_onlybool, default FalseInclude only float, int, boolean columns. New in version 1.5.0. *argsFor NumPy compatibility and will not have an effect on the result. Deprecated since version 1.5.0. enginestr, default None 'cython' : Runs the operation through C-extensions from cython. 'numba' : Runs the operation through JIT compiled code from numba. None : Defaults to 'cython' or globally setting compute.use_numba New in version 1.3.0. engine_kwargsdict, default None For 'cython' engine, there are no accepted engine_kwargs For 'numba' engine, the engine can accept nopython, nogil and parallel dictionary keys. The values must either be True or False. The default engine_kwargs for the 'numba' engine is {'nopython': True, 'nogil': False, 'parallel': False} New in version 1.3.0. **kwargsFor NumPy compatibility and will not have an effect on the result. Deprecated since version 1.5.0. Returns Series or DataFrameReturn type is the same as the original object with np.float64 dtype. See also pandas.Series.ewmCalling ewm with Series data. pandas.DataFrame.ewmCalling ewm with DataFrames. pandas.Series.meanAggregating mean for Series. pandas.DataFrame.meanAggregating mean for DataFrame. Notes See Numba engine and Numba (JIT compilation) for extended documentation and performance considerations for the Numba engine.
reference/api/pandas.core.window.ewm.ExponentialMovingWindow.mean.html
pandas.plotting.register_matplotlib_converters
`pandas.plotting.register_matplotlib_converters` Register pandas formatters and converters with matplotlib.
pandas.plotting.register_matplotlib_converters()[source]# Register pandas formatters and converters with matplotlib. This function modifies the global matplotlib.units.registry dictionary. pandas adds custom converters for pd.Timestamp pd.Period np.datetime64 datetime.datetime datetime.date datetime.time See also deregister_matplotlib_convertersRemove pandas formatters and converters.
reference/api/pandas.plotting.register_matplotlib_converters.html
pandas.PeriodIndex.second
`pandas.PeriodIndex.second` The second of the period.
property PeriodIndex.second[source]# The second of the period.
reference/api/pandas.PeriodIndex.second.html
pandas.tseries.offsets.Easter.normalize
pandas.tseries.offsets.Easter.normalize
Easter.normalize#
reference/api/pandas.tseries.offsets.Easter.normalize.html
pandas.tseries.offsets.BusinessHour.start
pandas.tseries.offsets.BusinessHour.start
BusinessHour.start#
reference/api/pandas.tseries.offsets.BusinessHour.start.html