Datasets:
Tasks:
Text Classification
Modalities:
Text
Sub-tasks:
multi-class-classification
Languages:
English
Size:
10K - 100K
ArXiv:
License:
Attempting to add data in repo.
Browse files- data/TAISafety/test.csv +0 -0
- data/TAISafety/train.csv +51 -0
- raft.py +2 -2
data/TAISafety/test.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
data/TAISafety/train.csv
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Title,Publication Title,Abstract Note,Safety Type,Safety or not
|
2 |
+
End to End Learning for Self-Driving Cars,,"We trained a convolutional neural network (CNN) to map raw pixels from a single front-facing camera directly to steering commands. This end-to-end approach proved surprisingly powerful. With minimum training data from humans the system learns to drive in traffic on local roads with or without lane markings and on highways. It also operates in areas with unclear visual guidance such as in parking lots and on unpaved roads. The system automatically learns internal representations of the necessary processing steps such as detecting useful road features with only the human steering angle as the training signal. We never explicitly trained it to detect, for example, the outline of roads. Compared to explicit decomposition of the problem, such as lane marking detection, path planning, and control, our end-to-end system optimizes all processing steps simultaneously. We argue that this will eventually lead to better performance and smaller systems. Better performance will result because the internal components self-optimize to maximize overall system performance, instead of optimizing human-selected intermediate criteria, e.g., lane detection. Such criteria understandably are selected for ease of human interpretation which doesn't automatically guarantee maximum system performance. Smaller networks are possible because the system learns to solve the problem with the minimal number of processing steps. We used an NVIDIA DevBox and Torch 7 for training and an NVIDIA DRIVE(TM) PX self-driving car computer also running Torch 7 for determining where to drive. The system operates at 30 frames per second (FPS).",NotSafety,Not safety
|
3 |
+
Hierarchical Reinforcement Learning with the MAXQ Value Function Decomposition,Journal of Artificial Intelligence Research,"This paper presents a new approach to hierarchical reinforcement learning based on decomposing the target Markov decision process (MDP) into a hierarchy of smaller MDPs and decomposing the value function of the target MDP into an additive combination of the value functions of the smaller MDPs. The decomposition, known as the MAXQ decomposition, has both a procedural semantics---as a subroutine hierarchy---and a declarative semantics---as a representation of the value function of a hierarchical policy. MAXQ unifies and extends previous work on hierarchical reinforcement learning by Singh, Kaelbling, and Dayan and Hinton. It is based on the assumption that the programmer can identify useful subgoals and define subtasks that achieve these subgoals. By defining such subgoals, the programmer constrains the set of policies that need to be considered during reinforcement learning. The MAXQ value function decomposition can represent the value function of any policy that is consistent with the given hierarchy. The decomposition also creates opportunities to exploit state abstractions, so that individual MDPs within the hierarchy can ignore large parts of the state space. This is important for the practical application of the method. This paper defines the MAXQ hierarchy, proves formal results on its representational power, and establishes five conditions for the safe use of state abstractions. The paper presents an online model-free learning algorithm, MAXQ-Q, and proves that it converges with probability 1 to a kind of locally-optimal policy known as a recursively optimal policy, even in the presence of the five kinds of state abstraction. The paper evaluates the MAXQ representation and MAXQ-Q through a series of experiments in three domains and shows experimentally that MAXQ-Q (with state abstractions) converges to a recursively optimal policy much faster than flat Q learning. The fact that MAXQ learns a representation of the value function has an important benefit: it makes it possible to compute and execute an improved, non-hierarchical policy via a procedure similar to the policy improvement step of policy iteration. The paper demonstrates the effectiveness of this non-hierarchical execution experimentally. Finally, the paper concludes with a comparison to related work and a discussion of the design tradeoffs in hierarchical reinforcement learning.",NotSafety,Not safety
|
4 |
+
Electronic media use and sleep in school-aged children and adolescents: A review,Sleep Medicine,,NotSafety,Not safety
|
5 |
+
"High Reliability Organizations: Unlikely, Demanding and At Risk",Journal of Contingencies and Crisis Management,,NotSafety,Not safety
|
6 |
+
Deep Reinforcement Learning that Matters,,"In recent years, significant progress has been made in solving challenging problems across various domains using deep reinforcement learning (RL). Reproducing existing work and accurately judging the improvements offered by novel methods is vital to sustaining this progress. Unfortunately, reproducing results for state-of-the-art deep RL methods is seldom straightforward. In particular, non-determinism in standard benchmark environments, combined with variance intrinsic to the methods, can make reported results tough to interpret. Without significance metrics and tighter standardization of experimental reporting, it is difficult to determine whether improvements over the prior state-of-the-art are meaningful. In this paper, we investigate challenges posed by reproducibility, proper experimental techniques, and reporting procedures. We illustrate the variability in reported metrics and results when comparing against common baselines and suggest guidelines to make future results in deep RL more reproducible. We aim to spur discussion about how to ensure continued progress in the field by minimizing wasted effort stemming from results that are non-reproducible and easily misinterpreted.",NotSafety,Not safety
|
7 |
+
Health Effects of Media on Children and Adolescents,PEDIATRICS,,NotSafety,Not safety
|
8 |
+
Hindsight Experience Replay,Advances in Neural Information Processing Systems 30 (NIPS 2017),"Dealing with sparse rewards is one of the biggest challenges in Reinforcement Learning (RL). We present a novel technique called Hindsight Experience Replay which allows sample-efficient learning from rewards which are sparse and binary and therefore avoid the need for complicated reward engineering. It can be combined with an arbitrary off-policy RL algorithm and may be seen as a form of implicit curriculum. We demonstrate our approach on the task of manipulating objects with a robotic arm. In particular, we run experiments on three different tasks: pushing, sliding, and pick-and-place, in each case using only binary rewards indicating whether or not the task is completed. Our ablation studies show that Hindsight Experience Replay is a crucial ingredient which makes training possible in these challenging environments. We show that our policies trained on a physics simulation can be deployed on a physical robot and successfully complete the task.",NotSafety,Not safety
|
9 |
+
Glow: Generative Flow with Invertible 1x1 Convolutions,Advances in Neural Information Processing Systems 31 (NeurIPS 2018),"Flow-based generative models (Dinh et al., 2014) are conceptually attractive due to tractability of the exact log-likelihood, tractability of exact latent-variable inference, and parallelizability of both training and synthesis. In this paper we propose Glow, a simple type of generative flow using an invertible 1x1 convolution. Using our method we demonstrate a significant improvement in log-likelihood on standard benchmarks. Perhaps most strikingly, we demonstrate that a generative model optimized towards the plain log-likelihood objective is capable of efficient realistic-looking synthesis and manipulation of large images. The code for our model is available at https://github.com/openai/glow",NotSafety,Not safety
|
10 |
+
Anthropic bias: observation selection effects in science and philosophy,,,MetaSafety,Safety
|
11 |
+
Deep Learning: A Critical Appraisal,,"Although deep learning has historical roots going back decades, neither the term ""deep learning"" nor the approach was popular just over five years ago, when the field was reignited by papers such as Krizhevsky, Sutskever and Hinton's now classic (2012) deep network model of Imagenet. What has the field discovered in the five subsequent years? Against a background of considerable progress in areas such as speech recognition, image recognition, and game playing, and considerable enthusiasm in the popular press, I present ten concerns for deep learning, and suggest that deep learning must be supplemented by other techniques if we are to reach artificial general intelligence.",NotSafety,Not safety
|
12 |
+
An Empirical Evaluation of Deep Learning on Highway Driving,,"Numerous groups have applied a variety of deep learning techniques to computer vision problems in highway perception scenarios. In this paper, we presented a number of empirical evaluations of recent deep learning advances. Computer vision, combined with deep learning, has the potential to bring about a relatively inexpensive, robust solution to autonomous driving. To prepare deep learning for industry uptake and practical applications, neural networks will require large data sets that represent all possible driving environments and scenarios. We collect a large data set of highway data and apply deep learning and computer vision algorithms to problems such as car and lane detection. We show how existing convolutional neural networks (CNNs) can be used to perform lane and vehicle detection while running at frame rates required for a real-time system. Our results lend credence to the hypothesis that deep learning holds promise for autonomous driving.",NotSafety,Not safety
|
13 |
+
Groupthink: Collective Delusions in Organizations and Markets,The Review of Economic Studies,,NotSafety,Not safety
|
14 |
+
How do we know we have global environmental problems? Science and the globalization of environmental discourse,Geoforum,,NotSafety,Not safety
|
15 |
+
Deep reinforcement learning from human preferences,Advances in Neural Information Processing Systems 30 (NIPS 2017),"For sophisticated reinforcement learning (RL) systems to interact usefully with real-world environments, we need to communicate complex goals to these systems. In this work, we explore goals defined in terms of (non-expert) human preferences between pairs of trajectory segments. We show that this approach can effectively solve complex RL tasks without access to the reward function, including Atari games and simulated robot locomotion, while providing feedback on less than one percent of our agent's interactions with the environment. This reduces the cost of human oversight far enough that it can be practically applied to state-of-the-art RL systems. To demonstrate the flexibility of our approach, we show that we can successfully train complex novel behaviors with about an hour of human time. These behaviors and environments are considerably more complex than any that have been previously learned from human feedback.",TechSafety,Safety
|
16 |
+
Adversarial Attacks on Neural Network Policies,,"Machine learning classifiers are known to be vulnerable to inputs maliciously constructed by adversaries to force misclassification. Such adversarial examples have been extensively studied in the context of computer vision applications. In this work, we show adversarial attacks are also effective when targeting neural network policies in reinforcement learning. Specifically, we show existing adversarial example crafting techniques can be used to significantly degrade test-time performance of trained policies. Our threat model considers adversaries capable of introducing small perturbations to the raw input of the policy. We characterize the degree of vulnerability across tasks and training algorithms, for a subclass of adversarial-example attacks in white-box and black-box settings. Regardless of the learned task or training algorithm, we observe a significant drop in performance, even with small adversarial perturbations that do not interfere with human perception. Videos are available at http://rll.berkeley.edu/adversarial.",NotSafety,Not safety
|
17 |
+
DeepMimic: Example-Guided Deep Reinforcement Learning of Physics-Based Character Skills,ACM Transactions on Graphics,"A longstanding goal in character animation is to combine data-driven specification of behavior with a system that can execute a similar behavior in a physical simulation, thus enabling realistic responses to perturbations and environmental variation. We show that well-known reinforcement learning (RL) methods can be adapted to learn robust control policies capable of imitating a broad range of example motion clips, while also learning complex recoveries, adapting to changes in morphology, and accomplishing user-specified goals. Our method handles keyframed motions, highly-dynamic actions such as motion-captured flips and spins, and retargeted motions. By combining a motion-imitation objective with a task objective, we can train characters that react intelligently in interactive settings, e.g., by walking in a desired direction or throwing a ball at a user-specified target. This approach thus combines the convenience and motion quality of using motion clips to define the desired style and appearance, with the flexibility and generality afforded by RL methods and physics-based animation. We further explore a number of methods for integrating multiple clips into the learning process to develop multi-skilled agents capable of performing a rich repertoire of diverse skills. We demonstrate results using multiple characters (human, Atlas robot, bipedal dinosaur, dragon) and a large variety of skills, including locomotion, acrobatics, and martial arts.",NotSafety,Not safety
|
18 |
+
Hierarchical Learning in Stochastic Domains: Preliminary Results,Machine Learning Proceedings 1993,,NotSafety,Not safety
|
19 |
+
Adversarial Risk and the Dangers of Evaluating Against Weak Attacks,Proceedings of the 35th International Conference on Machine Learning,"This paper investigates recently proposed approaches for defending against adversarial examples and evaluating adversarial robustness. We motivate 'adversarial risk' as an objective for achieving models robust to worst-case inputs. We then frame commonly used attacks and evaluation metrics as defining a tractable surrogate objective to the true adversarial risk. This suggests that models may optimize this surrogate rather than the true adversarial risk. We formalize this notion as 'obscurity to an adversary,' and develop tools and heuristics for identifying obscured models and designing transparent models. We demonstrate that this is a significant problem in practice by repurposing gradient-free optimization techniques into adversarial attacks, which we use to decrease the accuracy of several recently proposed defenses to near zero. Our hope is that our formulations and results will help researchers to develop more powerful defenses.",TechSafety,Safety
|
20 |
+
"Deep k-Nearest Neighbors: Towards Confident, Interpretable and Robust Deep Learning",,"Deep neural networks (DNNs) enable innovative applications of machine learning like image recognition, machine translation, or malware detection. However, deep learning is often criticized for its lack of robustness in adversarial settings (e.g., vulnerability to adversarial inputs) and general inability to rationalize its predictions. In this work, we exploit the structure of deep learning to enable new learning-based inference and decision strategies that achieve desirable properties such as robustness and interpretability. We take a first step in this direction and introduce the Deep k-Nearest Neighbors (DkNN). This hybrid classifier combines the k-nearest neighbors algorithm with representations of the data learned by each layer of the DNN: a test input is compared to its neighboring training points according to the distance that separates them in the representations. We show the labels of these neighboring points afford confidence estimates for inputs outside the model's training manifold, including on malicious inputs like adversarial examples--and therein provides protections against inputs that are outside the models understanding. This is because the nearest neighbors can be used to estimate the nonconformity of, i.e., the lack of support for, a prediction in the training data. The neighbors also constitute human-interpretable explanations of predictions. We evaluate the DkNN algorithm on several datasets, and show the confidence estimates accurately identify inputs outside the model, and that the explanations provided by nearest neighbors are intuitive and useful in understanding model failures.",NotSafety,Not safety
|
21 |
+
Defending Against Neural Fake News,Advances in Neural Information Processing Systems 32 (NeurIPS 2019),"Recent progress in natural language generation has raised dual-use concerns. While applications like summarization and translation are positive, the underlying technology also might enable adversaries to generate neural fake news: targeted propaganda that closely mimics the style of real news. Modern computer security relies on careful threat modeling: identifying potential threats and vulnerabilities from an adversary's point of view, and exploring potential mitigations to these threats. Likewise, developing robust defenses against neural fake news requires us first to carefully investigate and characterize the risks of these models. We thus present a model for controllable text generation called Grover. Given a headline like `Link Found Between Vaccines and Autism,' Grover can generate the rest of the article; humans find these generations to be more trustworthy than human-written disinformation. Developing robust verification techniques against generators like Grover is critical. We find that best current discriminators can classify neural fake news from real, human-written, news with 73% accuracy, assuming access to a moderate level of training data. Counterintuitively, the best defense against Grover turns out to be Grover itself, with 92% accuracy, demonstrating the importance of public release of strong generators. We investigate these results further, showing that exposure bias -- and sampling strategies that alleviate its effects -- both leave artifacts that similar discriminators can pick up on. We conclude by discussing ethical issues regarding the technology, and plan to release Grover publicly, helping pave the way for better detection of neural fake news.",NotSafety,Not safety
|
22 |
+
High Reliability and the Management of Critical Infrastructures,Journal of Contingencies and Crisis Management,,NotSafety,Not safety
|
23 |
+
Rough Consensus and Running Code' and the Internet-OSI Standards War,IEEE Annals of the History of Computing,,NotSafety,Not safety
|
24 |
+
Adversarial Attacks and Defences Competition,The NIPS '17 Competition: Building Intelligent Systems,"To accelerate research on adversarial examples and robustness of machine learning classifiers, Google Brain organized a NIPS 2017 competition that encouraged researchers to develop new methods to generate adversarial examples as well as to develop new ways to defend against them. In this chapter, we describe the structure and organization of the competition and the solutions developed by several of the top-placing teams.",NotSafety,Not safety
|
25 |
+
Economics of the singularity,IEEE Spectrum,,MetaSafety,Safety
|
26 |
+
"Delusion, Survival, and Intelligent Agents",Artificial General Intelligence,"This paper considers the consequences of endowing an intelligent agent with the ability to modify its own code. The intelligent agent is patterned closely after AIXI with these specific assumptions: 1) The agent is allowed to arbitrarily modify its own inputs if it so chooses; 2) The agent’s code is a part of the environment and may be read and written by the environment. The first of these we call the “delusion box”; the second we call “mortality”. Within this framework, we discuss and compare four very different kinds of agents, specifically: reinforcementlearning, goal-seeking, prediction-seeking, and knowledge-seeking agents. Our main results are that: 1) The reinforcement-learning agent under reasonable circumstances behaves exactly like an agent whose sole task is to survive (to preserve the integrity of its code); and 2) Only the knowledge-seeking agent behaves completely as expected.",TechSafety,Safety
|
27 |
+
ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators,,A text encoder trained to distinguish real input tokens from plausible fakes efficiently learns effective language representations.,NotSafety,Not safety
|
28 |
+
End-to-End Robotic Reinforcement Learning without Reward Engineering,"arXiv:1904.07854 [cs, stat]","The combination of deep neural network models and reinforcement learning algorithms can make it possible to learn policies for robotic behaviors that directly read in raw sensory inputs, such as camera images, effectively subsuming both estimation and control into one model. However, real-world applications of reinforcement learning must specify the goal of the task by means of a manually programmed reward function, which in practice requires either designing the very same perception pipeline that end-to-end reinforcement learning promises to avoid, or else instrumenting the environment with additional sensors to determine if the task has been performed successfully. In this paper, we propose an approach for removing the need for manual engineering of reward specifications by enabling a robot to learn from a modest number of examples of successful outcomes, followed by actively solicited queries, where the robot shows the user a state and asks for a label to determine whether that state represents successful completion of the task. While requesting labels for every single state would amount to asking the user to manually provide the reward signal, our method requires labels for only a tiny fraction of the states seen during training, making it an efficient and practical approach for learning skills without manually engineered rewards. We evaluate our method on real-world robotic manipulation tasks where the observations consist of images viewed by the robot's camera. In our experiments, our method effectively learns to arrange objects, place books, and drape cloth, directly from images and without any manually specified reward functions, and with only 1-4 hours of interaction with the real world.",NotSafety,Not safety
|
29 |
+
DeepType: Multilingual Entity Linking by Neural Type System Evolution,arXiv:1802.01021 [cs],"The wealth of structured (e.g. Wikidata) and unstructured data about the world available today presents an incredible opportunity for tomorrow's Artificial Intelligence. So far, integration of these two different modalities is a difficult process, involving many decisions concerning how best to represent the information so that it will be captured or useful, and hand-labeling large amounts of data. DeepType overcomes this challenge by explicitly integrating symbolic information into the reasoning process of a neural network with a type system. First we construct a type system, and second, we use it to constrain the outputs of a neural network to respect the symbolic structure. We achieve this by reformulating the design problem into a mixed integer problem: create a type system and subsequently train a neural network with it. In this reformulation discrete variables select which parent-child relations from an ontology are types within the type system, while continuous variables control a classifier fit to the type system. The original problem cannot be solved exactly, so we propose a 2-step algorithm: 1) heuristic search or stochastic optimization over discrete variables that define a type system informed by an Oracle and a Learnability heuristic, 2) gradient descent to fit classifier parameters. We apply DeepType to the problem of Entity Linking on three standard datasets (i.e. WikiDisamb30, CoNLL (YAGO), TAC KBP 2010) and find that it outperforms all existing solutions by a wide margin, including approaches that rely on a human-designed type system or recent deep learning-based entity embeddings, while explicitly using symbolic information lets it integrate new entities without retraining.",NotSafety,Not safety
|
30 |
+
Deep learning from crowds,Proc. of the Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-18),"Over the last few years, deep learning has revolutionized the field of machine learning by dramatically improving the state-of-the-art in various domains. However, as the size of supervised artificial neural networks grows, typically so does the need for larger labeled datasets. Recently, crowdsourcing has established itself as an efficient and cost-effective solution for labeling large sets of data in a scalable manner, but it often requires aggregating labels from multiple noisy contributors with different levels of expertise. In this paper, we address the problem of learning deep neural networks from crowds. We begin by describing an EM algorithm for jointly learning the parameters of the network and the reliabilities of the annotators. Then, a novel general-purpose crowd layer is proposed, which allows us to train deep neural networks end-to-end, directly from the noisy labels of multiple annotators, using only backpropagation. We empirically show that the proposed approach is able to internally capture the reliability and biases of different annotators and achieve new state-of-the-art results for various crowdsourced datasets across different settings, namely classification, regression and sequence labeling.",NotSafety,Not safety
|
31 |
+
Double catastrophe: intermittent stratospheric geoengineering induced by societal collapse,Environment Systems & Decisions,,NotSafety,Not safety
|
32 |
+
An Empirical Model of Large-Batch Training,,"In an increasing number of domains it has been demonstrated that deep learning models can be trained using relatively large batch sizes without sacrificing data efficiency. However the limits of this massive data parallelism seem to differ from domain to domain, ranging from batches of tens of thousands in ImageNet to batches of millions in RL agents that play the game Dota 2. To our knowledge there is limited conceptual understanding of why these limits to batch size differ or how we might choose the correct batch size in a new domain. In this paper, we demonstrate that a simple and easy-to-measure statistic called the gradient noise scale predicts the largest useful batch size across many domains and applications, including a number of supervised learning datasets (MNIST, SVHN, CIFAR-10, ImageNet, Billion Word), reinforcement learning domains (Atari and Dota), and even generative model training (autoencoders on SVHN). We find that the noise scale increases as the loss decreases over a training run and depends on the model size primarily through improved model performance. Our empirically-motivated theory also describes the tradeoff between compute-efficiency and time-efficiency, and provides a rough model of the benefits of adaptive batch-size training.",NotSafety,Not safety
|
33 |
+
Algorithms for Differentially Private Multi-Armed Bandits,AAAI'16: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence,"We present differentially private algorithms for the stochastic Multi-Armed Bandit (MAB) problem. This is a problem for applications such as adaptive clinical trials, experiment design, and user-targeted advertising where private information is connected to individual rewards. Our major contribution is to show that there exist $(\epsilon, \delta)$ differentially private variants of Upper Confidence Bound algorithms which have optimal regret, $O(\epsilon^{-1} + \log T)$. This is a significant improvement over previous results, which only achieve poly-log regret $O(\epsilon^{-2} \log^{2} T)$, because of our use of a novel interval-based mechanism. We also substantially improve the bounds of previous family of algorithms which use a continual release mechanism. Experiments clearly validate our theoretical bounds.",NotSafety,Not safety
|
34 |
+
Global Catastrophic Risks Survey,,,MetaSafety,Safety
|
35 |
+
Hierarchical Game-Theoretic Planning for Autonomous Vehicles,Robotics: Science and Systems 2019,"The actions of an autonomous vehicle on the road affect and are affected by those of other drivers, whether overtaking, negotiating a merge, or avoiding an accident. This mutual dependence, best captured by dynamic game theory, creates a strong coupling between the vehicle’s planning and its predictions of other drivers’ behavior, and constitutes an open problem with direct implications on the safety and viability of autonomous driving technology. Unfortunately, dynamic games are too computationally demanding to meet the real-time constraints of autonomous driving in its continuous state and action space. In this paper, we introduce a novel game-theoretic trajectory planning algorithm for autonomous driving, that enables real-time performance by hierarchically decomposing the underlying dynamic game into a long-horizon “strategic” game with simplified dynamics and full information structure, and a short-horizon “tactical” game with full dynamics and a simplified information structure. The value of the strategic game is used to guide the tactical planning, implicitly extending the planning horizon, pushing the local trajectory optimization closer to global solutions, and, most importantly, quantitatively accounting for the autonomous vehicle and the human driver’s ability and incentives to influence each other. In addition, our approach admits non-deterministic models of human decisionmaking, rather than relying on perfectly rational predictions. Our results showcase richer, safer, and more effective autonomous behavior in comparison to existing techniques.",TechSafety,Safety
|
36 |
+
Global challenges: 12 risks that threaten human civilization,"Global Challenges Foundation, Stockholm",,MetaSafety,Safety
|
37 |
+
"Deep Imitative Models for Flexible Inference, Planning, and Control","arXiv:1810.06544 [cs, stat]","Imitation Learning (IL) is an appealing approach to learn desirable autonomous behavior. However, directing IL to achieve arbitrary goals is difficult. In contrast, planning-based algorithms use dynamics models and reward functions to achieve goals. Yet, reward functions that evoke desirable behavior are often difficult to specify. In this paper, we propose Imitative Models to combine the benefits of IL and goal-directed planning. Imitative Models are probabilistic predictive models of desirable behavior able to plan interpretable expert-like trajectories to achieve specified goals. We derive families of flexible goal objectives, including constrained goal regions, unconstrained goal sets, and energy-based goals. We show that our method can use these objectives to successfully direct behavior. Our method substantially outperforms six IL approaches and a planning-based approach in a dynamic simulated autonomous driving task, and is efficiently learned from expert demonstrations without online data collection. We also show our approach is robust to poorly specified goals, such as goals on the wrong side of the road.",NotSafety,Not safety
|
38 |
+
Historical and Technical Notes on Aqueducts from Prehistoric to Medieval Times,Water,,NotSafety,Not safety
|
39 |
+
Dynamic generation and refinement of robot verbalization,2016 25th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN),"With a growing number of robots performing autonomously without human intervention, it is difficult to understand what the robots experience along their routes during execution without looking at execution logs. Rather than looking through logs, our goal is for robots to respond to queries in natural language about what they experience and what routes they have chosen. We propose verbalization as the process of converting route experiences into natural language, and highlight the importance of varying verbalizations based on user preferences. We present our verbalization space representing different dimensions that verbalizations can be varied, and our algorithm for automatically generating them on our CoBot robot. Then we present our study of how users can request different verbalizations in dialog. Using the study data, we learn a language model to map user dialog to the verbalization space. Finally, we demonstrate the use of the learned model within a dialog system in order for any user to request information about CoBot’s route experience at varying levels of detail.",NotSafety,Not safety
|
40 |
+
Adversarial Robustness through Local Linearization,Advances in Neural Information Processing Systems 32 (NeurIPS 2019),"Adversarial training is an effective methodology for training deep neural networks that are robust against adversarial, norm-bounded perturbations. However, the computational cost of adversarial training grows prohibitively as the size of the model and number of input dimensions increase. Further, training against less expensive and therefore weaker adversaries produces models that are robust against weak attacks but break down under attacks that are stronger. This is often attributed to the phenomenon of gradient obfuscation; such models have a highly non-linear loss surface in the vicinity of training examples, making it hard for gradient-based attacks to succeed even though adversarial examples still exist. In this work, we introduce a novel regularizer that encourages the loss to behave linearly in the vicinity of the training data, thereby penalizing gradient obfuscation while encouraging robustness. We show via extensive experiments on CIFAR-10 and ImageNet, that models trained with our regularizer avoid gradient obfuscation and can be trained significantly faster than adversarial training. Using this regularizer, we exceed current state of the art and achieve 47% adversarial accuracy for ImageNet with l-infinity adversarial perturbations of radius 4/255 under an untargeted, strong, white-box attack. Additionally, we match state of the art results for CIFAR-10 at 8/255.",TechSafety,Safety
|
41 |
+
Graphical Models for Processing Missing Data,Journal of American Statistical Association,"This paper reviews recent advances in missing data research using graphical models to represent multivariate dependencies. We first examine the limitations of traditional frameworks from three different perspectives: \textit{transparency, estimability and testability}. We then show how procedures based on graphical models can overcome these limitations and provide meaningful performance guarantees even when data are Missing Not At Random (MNAR). In particular, we identify conditions that guarantee consistent estimation in broad categories of missing data problems, and derive procedures for implementing this estimation. Finally we derive testable implications for missing data models in both MAR (Missing At Random) and MNAR categories.",NotSafety,Not safety
|
42 |
+
Goal Inference Improves Objective and Perceived Performance in Human-Robot Collaboration,Proceedings of the 15th International Conferenceon Autonomous Agents and Multiagent Systems (AAMAS 2016),"The study of human-robot interaction is fundamental to the design and use of robotics in real-world applications. Robots will need to predict and adapt to the actions of human collaborators in order to achieve good performance and improve safety and end-user adoption. This paper evaluates a human-robot collaboration scheme that combines the task allocation and motion levels of reasoning: the robotic agent uses Bayesian inference to predict the next goal of its human partner from his or her ongoing motion, and re-plans its own actions in real time. This anticipative adaptation is desirable in many practical scenarios, where humans are unable or unwilling to take on the cognitive overhead required to explicitly communicate their intent to the robot. A behavioral experiment indicates that the combination of goal inference and dynamic task planning significantly improves both objective and perceived performance of the human-robot team. Participants were highly sensitive to the differences between robot behaviors, preferring to work with a robot that adapted to their actions over one that did not.",TechSafety,Safety
|
43 |
+
Empirical evidence for resource-rational anchoring and adjustment,Psychonomic Bulletin & Review,"People’s estimates of numerical quantities are systematically biased towards their initial guess. This anchoring bias is usually interpreted as sign of human irrationality, but it has recently been suggested that the anchoring bias instead results from people’s rational use of their finite time and limited cognitive resources. If this were true, then adjustment should decrease with the relative cost of time. To test this hypothesis, we designed a new numerical estimation paradigm that controls people’s knowledge and varies the cost of time and error independently while allowing people to invest as much or as little time and effort into refining their estimate as they wish. Two experiments confirmed the prediction that adjustment decreases with time cost but increases with error cost regardless of whether the anchor was self-generated or provided. These results support the hypothesis that people rationally adapt their number of adjustments to achieve a near-optimal speed-accuracy tradeoff. This suggests that the anchoring bias might be a signature of the rational use of finite time and limited cognitive resources rather than a sign of human irrationality.",NotSafety,Not safety
|
44 |
+
Guidelines for Artificial Intelligence Containment,,"With almost daily improvements in capabilities of artificial intelligence it is more important than ever to develop safety software for use by the AI research community. Building on our previous work on AI Containment Problem we propose a number of guidelines which should help AI safety researchers to develop reliable sandboxing software for intelligent programs of all levels. Such safety container software will make it possible to study and analyze intelligent artificial agent while maintaining certain level of safety against information leakage, social engineering attacks and cyberattacks from within the container.",TechSafety,Safety
|
45 |
+
Global Catastrophic Risks 2016,,"Global catastrophes sometimes strike. In 1918 the Spanish Flu killed as many as one in twenty people. There have been even more devastating pandemics - the Black Death and the 6th century Plague of Justinian may have each killed nearer to one in every six people on this earth. More recently, the Cub",MetaSafety,Safety
|
46 |
+
Guided search for task and motion plans using learned heuristics,2016 IEEE International Conference on Robotics and Automation (ICRA),"Tasks in mobile manipulation planning often require thousands of individual motions to complete. Such tasks require reasoning about complex goals as well as the feasibility of movements in configuration space. In discrete representations, planning complexity is exponential in the length of the plan. In mobile manipulation, parameters for an action often draw from a continuous space, so we must also cope with an infinite branching factor. Task and motion planning (TAMP) methods integrate a logical search over high-level actions with geometric reasoning to address this challenge. We present an algorithm that searches the space of possible task and motion plans, and uses statistical machine learning to guide the search process. Our contributions are as follows: 1) we present a complete algorithm for TAMP; 2) we present a randomized local search algorithm for TAMP that is easily formulated as a Markov decision process (MDP); 3) we apply reinforcement learning (RL) to learn a policy for this MDP; 4) we learn from expert demonstrations to efficiently search the space of task plans, given options that address different (potential) infeasibilities; and 5) we run experiments to evaluate the performance of our system in a variety of simulated domains. We show significant improvements in performance over prior work.",NotSafety,Not safety
|
47 |
+
Goal-conditioned Imitation Learning,Advances in Neural Information Processing Systems 32 (NeurIPS 2019),"Designing rewards for Reinforcement Learning (RL) is challenging because it needs to convey the desired task, be efficient to optimize, and be easy to compute. The latter is particularly problematic when applying RL to robotics, where detecting whether the desired configuration is reached might require considerable supervision and instrumentation. Furthermore, we are often interested in being able to reach a wide range of configurations, hence setting up a different reward every time might be unpractical. Methods like Hindsight Experience Replay (HER) have recently shown promise to learn policies able to reach many goals, without the need of a reward. Unfortunately, without tricks like resetting to points along the trajectory, HER might require many samples to discover how to reach certain areas of the state-space. In this work we investigate different approaches to incorporate demonstrations to drastically speed up the convergence to a policy able to reach any goal, also surpassing the performance of an agent trained with other Imitation Learning algorithms. Furthermore, we show our method can also be used when the available expert trajectories do not contain the actions, which can leverage kinesthetic or third person demonstration. The code is available at https://sites.google.com/view/goalconditioned-il/.",NotSafety,Not safety
|
48 |
+
Adversarial Policies: Attacking Deep Reinforcement Learning,,"Deep reinforcement learning (RL) policies are known to be vulnerable to adversarial perturbations to their observations, similar to adversarial examples for classifiers. However, an attacker is not usually able to directly modify another agent’s observations. This might lead one to wonder: is it possible to attack an RL agent simply by choosing an adversarial policy acting in a multi-agent environment so as to create natural observations that are adversarial? We demonstrate the existence of adversarial policies in zero-sum games between simulated humanoid robots with proprioceptive observations, against state-of-the-art victims trained via self-play to be robust to opponents. The adversarial policies reliably win against the victims but generate seemingly random and uncoordinated behavior. We find that these policies are more successful in high-dimensional environments, and induce substantially different activations in the victim policy network than when the victim plays against a normal opponent. Videos are available at https://adversarialpolicies.github.io/.",TechSafety,Safety
|
49 |
+
Adversarial Imitation via Variational Inverse Reinforcement Learning,,"We consider a problem of learning the reward and policy from expert examples under unknown dynamics. Our proposed method builds on the framework of generative adversarial networks and introduces the empowerment-regularized maximum-entropy inverse reinforcement learning to learn near-optimal rewards and policies. Empowerment-based regularization prevents the policy from overfitting to expert demonstrations, which advantageously leads to more generalized behaviors that result in learning near-optimal rewards. Our method simultaneously learns empowerment through variational information maximization along with the reward and policy under the adversarial learning formulation. We evaluate our approach on various high-dimensional complex control tasks. We also test our learned rewards in challenging transfer learning problems where training and testing environments are made to be different from each other in terms of dynamics or structure. The results show that our proposed method not only learns near-optimal rewards and policies that are matching expert behavior but also performs significantly better than state-of-the-art inverse reinforcement learning algorithms.",NotSafety,Not safety
|
50 |
+
Dynamics-Aware Unsupervised Discovery of Skills,,"Conventionally, model-based reinforcement learning (MBRL) aims to learn a global model for the dynamics of the environment. A good model can potentially enable planning algorithms to generate a large variety of behaviors and solve diverse tasks. However, learning an accurate model for complex dynamical systems is difficult, and even then, the model might not generalize well outside the distribution of states on which it was trained. In this work, we combine model-based learning with model-free learning of primitives that make model-based planning easy. To that end, we aim to answer the question: how can we discover skills whose outcomes are easy to predict? We propose an unsupervised learning algorithm, Dynamics-Aware Discovery of Skills (DADS), which simultaneously discovers predictable behaviors and learns their dynamics. Our method can leverage continuous skill spaces, theoretically, allowing us to learn infinitely many behaviors even for high-dimensional state-spaces. We demonstrate that zero-shot planning in the learned latent space significantly outperforms standard MBRL and model-free goal-conditioned RL, can handle sparse-reward tasks, and substantially improves over prior hierarchical RL methods for unsupervised skill discovery.",NotSafety,Not safety
|
51 |
+
Enhancing metacognitive reinforcement learning using reward structures and feedback,39th Annual Meeting of the Cognitive Science Society,"How do we learn to think better, and what can we do to promote such metacognitive learning? Here, we propose that cognitive growth proceeds through metacognitive reinforcement learning. We apply this theory to model how people learn how far to plan ahead and test its predictions about the speed of metacognitive learning in two experiments. In the first experiment, we find that our model can discern a reward structure that promotes metacognitive reinforcement learning from one that hinders it. In the second experiment, we show that our model can be used to design a feedback mechanism that enhances metacognitive reinforcement learning in an environment that hinders learning. Our results suggest that modeling metacognitive learning is a promising step towards promoting cognitive growth.",NotSafety,Not safety
|
raft.py
CHANGED
@@ -50,8 +50,8 @@ _LICENSE = ""
|
|
50 |
# The HuggingFace dataset library don't host the datasets but only point to the original files
|
51 |
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
52 |
_URLs = {
|
53 |
-
'train': "
|
54 |
-
'test': "
|
55 |
}
|
56 |
|
57 |
|
|
|
50 |
# The HuggingFace dataset library don't host the datasets but only point to the original files
|
51 |
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
52 |
_URLs = {
|
53 |
+
'train': "./data/TAISafety/train.csv",
|
54 |
+
'test': "./data/TAISafety/test.csv"
|
55 |
}
|
56 |
|
57 |
|