Datasets:
Tasks:
Text Classification
Modalities:
Text
Sub-tasks:
multi-class-classification
Languages:
English
Size:
10K - 100K
ArXiv:
License:
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import csv | |
import json | |
import os | |
from pathlib import Path | |
import datasets | |
# TODO: Add BibTeX citation | |
# Find for instance the citation on arxiv or on the dataset repo/website | |
_CITATION = """\ | |
@InProceedings{huggingface:dataset, | |
title = {A great new dataset}, | |
author={huggingface, Inc. | |
}, | |
year={2020} | |
} | |
""" | |
# You can copy an official description | |
_DESCRIPTION = """ | |
""" | |
# TODO: Add a link to an official homepage for the dataset here | |
_HOMEPAGE = "" | |
# TODO: Add the licence for the dataset here if you can find it | |
_LICENSE = "" | |
# TODO: Add link to the official dataset URLs here | |
# The HuggingFace dataset library don't host the datasets but only point to the original files | |
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method) | |
# This gets all folders within the directory named `data` | |
DATA_DIR_URL = "data/" # "https://huggingface.co/datasets/ought/raft/resolve/main/data/" | |
# print([p for p in DATA_DIR_PATH.iterdir() if p.is_dir()]) | |
TASKS = { | |
"ade_corpus_v2": { | |
"name": "ade_corpus_v2", | |
"description": "", | |
"data_columns": [ | |
"Sentence", | |
"ID" | |
], | |
"label_columns": { | |
"Label": [ | |
"ADE-related", | |
"not ADE-related" | |
] | |
} | |
}, | |
"banking_77": { | |
"name": "banking_77", | |
"description": "", | |
"data_columns": [ | |
"Query", | |
"ID" | |
], | |
"label_columns": { | |
"Label": [ | |
"Refund_not_showing_up", | |
"activate_my_card", | |
"age_limit", | |
"apple_pay_or_google_pay", | |
"atm_support", | |
"automatic_top_up", | |
"balance_not_updated_after_bank_transfer", | |
"balance_not_updated_after_cheque_or_cash_deposit", | |
"beneficiary_not_allowed", | |
"cancel_transfer", | |
"card_about_to_expire", | |
"card_acceptance", | |
"card_arrival", | |
"card_delivery_estimate", | |
"card_linking", | |
"card_not_working", | |
"card_payment_fee_charged", | |
"card_payment_not_recognised", | |
"card_payment_wrong_exchange_rate", | |
"card_swallowed", | |
"cash_withdrawal_charge", | |
"cash_withdrawal_not_recognised", | |
"change_pin", | |
"compromised_card", | |
"contactless_not_working", | |
"country_support", | |
"declined_card_payment", | |
"declined_cash_withdrawal", | |
"declined_transfer", | |
"direct_debit_payment_not_recognised", | |
"disposable_card_limits", | |
"edit_personal_details", | |
"exchange_charge", | |
"exchange_rate", | |
"exchange_via_app", | |
"extra_charge_on_statement", | |
"failed_transfer", | |
"fiat_currency_support", | |
"get_disposable_virtual_card", | |
"get_physical_card", | |
"getting_spare_card", | |
"getting_virtual_card", | |
"lost_or_stolen_card", | |
"lost_or_stolen_phone", | |
"order_physical_card", | |
"passcode_forgotten", | |
"pending_card_payment", | |
"pending_cash_withdrawal", | |
"pending_top_up", | |
"pending_transfer", | |
"pin_blocked", | |
"receiving_money", | |
"request_refund", | |
"reverted_card_payment?", | |
"supported_cards_and_currencies", | |
"terminate_account", | |
"top_up_by_bank_transfer_charge", | |
"top_up_by_card_charge", | |
"top_up_by_cash_or_cheque", | |
"top_up_failed", | |
"top_up_limits", | |
"top_up_reverted", | |
"topping_up_by_card", | |
"transaction_charged_twice", | |
"transfer_fee_charged", | |
"transfer_into_account", | |
"transfer_not_received_by_recipient", | |
"transfer_timing", | |
"unable_to_verify_identity", | |
"verify_my_identity", | |
"verify_source_of_funds", | |
"verify_top_up", | |
"virtual_card_not_working", | |
"visa_or_mastercard", | |
"why_verify_identity", | |
"wrong_amount_of_cash_received", | |
"wrong_exchange_rate_for_cash_withdrawal" | |
] | |
} | |
}, | |
"terms_of_service": { | |
"name": "terms_of_service", | |
"description": "", | |
"data_columns": [ | |
"Sentence", | |
"ID" | |
], | |
"label_columns": { | |
"Label": [ | |
"not potentially unfair", | |
"potentially unfair" | |
] | |
} | |
}, | |
"tai_safety_research": { | |
"name": "tai_safety_research", | |
"description": "", | |
"data_columns": [ | |
"Title", | |
"Abstract Note", | |
"Url", | |
"Publication Year", | |
"Item Type", | |
"Author", | |
"Publication Title", | |
"ID" | |
], | |
"label_columns": { | |
"Label": [ | |
"TAI safety research", | |
"not TAI safety research" | |
] | |
} | |
}, | |
"neurips_impact_statement_risks": { | |
"name": "neurips_impact_statement_risks", | |
"description": "", | |
"data_columns": [ | |
"Paper title", | |
"Paper link", | |
"Impact statement", | |
"ID" | |
], | |
"label_columns": { | |
"Label": [ | |
"doesn't mention a harmful application", | |
"mentions a harmful application" | |
] | |
} | |
}, | |
"medical_subdomain_of_clinical_notes": { | |
"name": "medical_subdomain_of_clinical_notes", | |
"description": "", | |
"data_columns": [ | |
"Note", | |
"ID" | |
], | |
"label_columns": { | |
"Label": [ | |
"cardiology", | |
"gastroenterology", | |
"nephrology", | |
"neurology", | |
"psychiatry", | |
"pulmonary disease" | |
] | |
} | |
}, | |
"overruling": { | |
"name": "overruling", | |
"description": "", | |
"data_columns": [ | |
"Sentence", | |
"ID" | |
], | |
"label_columns": { | |
"Label": [ | |
"not overruling", | |
"overruling" | |
] | |
} | |
}, | |
"systematic_review_inclusion": { | |
"name": "systematic_review_inclusion", | |
"description": "", | |
"data_columns": [ | |
"Title", | |
"Abstract", | |
"Authors", | |
"Journal", | |
"ID" | |
], | |
"label_columns": { | |
"Label": [ | |
"included", | |
"not included" | |
] | |
} | |
}, | |
"one_stop_english": { | |
"name": "one_stop_english", | |
"description": "", | |
"data_columns": [ | |
"Article", | |
"ID" | |
], | |
"label_columns": { | |
"Label": [ | |
"advanced", | |
"elementary", | |
"intermediate" | |
] | |
} | |
}, | |
"tweet_eval_hate": { | |
"name": "tweet_eval_hate", | |
"description": "", | |
"data_columns": [ | |
"Tweet", | |
"ID" | |
], | |
"label_columns": { | |
"Label": [ | |
"hate speech", | |
"not hate speech" | |
] | |
} | |
}, | |
"twitter_complaints": { | |
"name": "twitter_complaints", | |
"description": "", | |
"data_columns": [ | |
"Tweet text", | |
"ID" | |
], | |
"label_columns": { | |
"Label": [ | |
"complaint", | |
"no complaint" | |
] | |
} | |
}, | |
"semiconductor_org_types": { | |
"name": "semiconductor_org_types", | |
"description": "", | |
"data_columns": [ | |
"Paper title", | |
"Organization name", | |
"ID" | |
], | |
"label_columns": { | |
"Label": [ | |
"company", | |
"research institute", | |
"university" | |
] | |
} | |
}, | |
} | |
_URLs = {s: {"train": f"{DATA_DIR_URL}{s}/train.csv", "test": f"{DATA_DIR_URL}{s}/test_unlabeled.csv"} for s in TASKS} | |
class Raft(datasets.GeneratorBasedBuilder): | |
"""RAFT Dataset.""" | |
VERSION = datasets.Version("1.1.0") | |
# This is an example of a dataset with multiple configurations. | |
# If you don't want/need to define several sub-sets in your dataset, | |
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes. | |
# If you need to make complex sub-parts in the datasets with configurable options | |
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig | |
# BUILDER_CONFIG_CLASS = MyBuilderConfig | |
# You will be able to load one or the other configurations in the following list with | |
# data = datasets.load_dataset('my_dataset', 'first_domain') | |
# data = datasets.load_dataset('my_dataset', 'second_domain') | |
BUILDER_CONFIGS = [] | |
for key in TASKS: | |
td = TASKS[key] | |
name = td["name"] | |
description = td["description"] | |
BUILDER_CONFIGS.append(datasets.BuilderConfig(name=name, version=VERSION, description=description)) | |
DEFAULT_CONFIG_NAME = ( | |
"tai_safety_research" # It's not mandatory to have a default configuration. Just use one if it make sense. | |
) | |
def _info(self): | |
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset | |
DEFAULT_LABEL_NAME = "Unlabeled" | |
task = TASKS[self.config.name] | |
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset | |
data_columns = {col_name: datasets.Value("string") for col_name in task["data_columns"]} | |
label_columns = {} | |
for label_name in task["label_columns"]: | |
labels = [DEFAULT_LABEL_NAME] + task["label_columns"][label_name] | |
label_columns[label_name] = datasets.ClassLabel(len(labels), labels) | |
# Merge dicts | |
features = datasets.Features(**data_columns, **label_columns) | |
return datasets.DatasetInfo( | |
# This is the description that will appear on the datasets page. | |
description=_DESCRIPTION, | |
# This defines the different columns of the dataset and their types | |
features=features, # Here we define them above because they are different between the two configurations | |
# If there's a common (input, target) tuple from the features, | |
# specify them here. They'll be used if as_supervised=True in | |
# builder.as_dataset. | |
supervised_keys=None, | |
# Homepage of the dataset for documentation | |
homepage=_HOMEPAGE, | |
# License for the dataset if available | |
license=_LICENSE, | |
# Citation for the dataset | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration | |
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name | |
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs | |
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files. | |
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive | |
data_dir = dl_manager.download_and_extract(_URLs) | |
dataset = self.config.name | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_dir[dataset]["train"], "split": "train"} | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, gen_kwargs={"filepath": data_dir[dataset]["test"], "split": "test"} | |
), | |
] | |
def _generate_examples( | |
self, filepath, split # method parameters are unpacked from `gen_kwargs` as given in `_split_generators` | |
): | |
"""Yields examples as (key, example) tuples.""" | |
# This method handles input defined in _split_generators to yield (key, example) tuples from the dataset. | |
# The `key` is here for legacy reason (tfds) and is not important in itself. | |
task = TASKS[self.config.name] | |
labels = list(task["label_columns"]) | |
with open(filepath, encoding="utf-8") as f: | |
csv_reader = csv.reader(f, quotechar='"', delimiter=",", quoting=csv.QUOTE_ALL, skipinitialspace=True) | |
column_names = next(csv_reader) | |
# Test csvs don't have any label columns. | |
if split == "test": | |
column_names += labels | |
for id_, row in enumerate(csv_reader): | |
if split == "test": | |
row += ["Unlabeled"] * len(labels) | |
# dicts don't have inherent ordering in python, right?? | |
yield id_, {name: value for name, value in zip(column_names, row)} | |