Datasets:
Tasks:
Text Classification
Modalities:
Text
Sub-tasks:
multi-class-classification
Languages:
English
Size:
10K - 100K
ArXiv:
License:
File size: 7,025 Bytes
0e4d757 7a16153 0e4d757 74e4c32 a3d1272 0e4d757 edbfbc6 0e4d757 74e4c32 a3d1272 74e4c32 8eae632 a3d1272 74e4c32 a3d1272 74e4c32 0e4d757 59de89d a3d1272 74e4c32 59de89d 74e4c32 0e4d757 59de89d 0e4d757 edbfbc6 0e4d757 edbfbc6 0e4d757 edbfbc6 0e4d757 74e4c32 dceab29 edbfbc6 0e4d757 74e4c32 dceab29 0e4d757 74e4c32 dceab29 a3d1272 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import csv
import json
import os
import datasets
# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {A great new dataset},
author={huggingface, Inc.
},
year={2020}
}
"""
# You can copy an official description
_DESCRIPTION = """
"""
# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = ""
# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""
# TODO: Add link to the official dataset URLs here
# The HuggingFace dataset library don't host the datasets but only point to the original files
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
# This gets all folders within the directory named `data`
DATA_DIRS = next(os.walk('data'))[1]
_URLs = {s: {'train': f"data/{s}/train.csv",
'test': f"data/{s}/test_unlabeled.csv"} for s in DATA_DIRS}
class Raft(datasets.GeneratorBasedBuilder):
"""RAFT Dataset."""
VERSION = datasets.Version("1.1.0")
# This is an example of a dataset with multiple configurations.
# If you don't want/need to define several sub-sets in your dataset,
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
# If you need to make complex sub-parts in the datasets with configurable options
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
# BUILDER_CONFIG_CLASS = MyBuilderConfig
# You will be able to load one or the other configurations in the following list with
# data = datasets.load_dataset('my_dataset', 'first_domain')
# data = datasets.load_dataset('my_dataset', 'second_domain')
# TODO: Load task jsons
tasks = {}
for sd in DATA_DIRS:
with open(os.path.join('data', sd, 'task.json')) as f:
task_data = json.load(f)
tasks[sd] = task_data
BUILDER_CONFIGS = []
for key in tasks:
td = tasks[key]
name = td['name']
description = td['description']
BUILDER_CONFIGS.append(datasets.BuilderConfig(name=name, version=VERSION,
description=description))
DEFAULT_CONFIG_NAME = "tai_safety_research" # It's not mandatory to have a default configuration. Just use one if it make sense.
def _info(self):
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
DEFAULT_LABEL_NAME = "Unlabeled"
task = Raft.tasks[self.config.name]
data_columns = {col_name: datasets.Value("string") for col_name in
task['data_columns']}
label_columns = {}
for label_name in task['label_columns']:
labels = [DEFAULT_LABEL_NAME] + task['label_columns'][label_name]
label_columns[label_name] = datasets.ClassLabel(len(labels), labels)
# Merge dicts
features = datasets.Features(**data_columns, **label_columns)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features,
# specify them here. They'll be used if as_supervised=True in
# builder.as_dataset.
supervised_keys=None,
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
data_dir = dl_manager.download_and_extract(_URLs)
dataset = self.config.name
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN,
gen_kwargs={"filepath": data_dir[dataset]['train'],
"split": "train"}),
datasets.SplitGenerator(name=datasets.Split.TEST,
gen_kwargs={"filepath": data_dir[dataset]['test'],
"split": "test"})
]
def _generate_examples(
self, filepath, split # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
):
""" Yields examples as (key, example) tuples. """
# This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
# The `key` is here for legacy reason (tfds) and is not important in itself.
task = Raft.tasks[self.config.name]
labels = list(task['label_columns'])
with open(filepath, encoding="utf-8") as f:
csv_reader = csv.reader(f, quotechar='"', delimiter=",",
quoting=csv.QUOTE_ALL, skipinitialspace=True)
column_names = next(csv_reader)
# Test csvs don't have any label columns.
if split == "test":
column_names += labels
for id_, row in enumerate(csv_reader):
if split == "test":
row += ["Unlabeled"] * len(labels)
# dicts don't have inherent ordering in python, right??
yield id_, {name: value for name, value in zip(column_names, row)}
|