Add baseline example, fix Git commands
Browse files- README.md +38 -7
- {{cookiecutter.repo_name}}/README.md +25 -1
- {{cookiecutter.repo_name}}/cli.py +1 -2
README.md
CHANGED
@@ -10,16 +10,25 @@ This repository can be used to generate a template so you can submit your predic
|
|
10 |
|
11 |
## Quickstart
|
12 |
|
13 |
-
### 1. Create an account
|
14 |
|
15 |
First create an account on the Hugging Face Hub and you can sign up [here](https://huggingface.co/join) if you haven't already!
|
16 |
|
17 |
### 2. Create a template repository on your machine
|
18 |
|
19 |
-
The next step is to create a template repository on your local machine that contains various files and a CLI to help you validate and submit your predictions.
|
20 |
|
21 |
```bash
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
pip install cookiecutter huggingface-hub==0.0.16
|
24 |
# Create the template repository
|
25 |
cookiecutter git+https://huggingface.co/datasets/ought/raft-submission
|
@@ -86,13 +95,11 @@ my-raft-submission
|
|
86 |
|
87 |
### 3. Install the dependencies
|
88 |
|
89 |
-
The final step is to install the project's dependencies
|
90 |
|
91 |
```bash
|
92 |
# Navigate to the template repository
|
93 |
cd my-raft-submissions
|
94 |
-
# Create and activate a virtual environment
|
95 |
-
conda create -n raft python=3.8 && conda activate raft
|
96 |
# Install dependencies
|
97 |
python -m pip install -r requirements.txt
|
98 |
```
|
@@ -124,7 +131,31 @@ For each task in RAFT, you should create a CSV file called `predictions.csv` wit
|
|
124 |
* ID (int)
|
125 |
* Label (string)
|
126 |
|
127 |
-
See the dummy predictions in the `data` folder for examples with the expected format.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
|
129 |
```
|
130 |
data
|
|
|
10 |
|
11 |
## Quickstart
|
12 |
|
13 |
+
### 1. Create an account on the Hugging Face Hub
|
14 |
|
15 |
First create an account on the Hugging Face Hub and you can sign up [here](https://huggingface.co/join) if you haven't already!
|
16 |
|
17 |
### 2. Create a template repository on your machine
|
18 |
|
19 |
+
The next step is to create a template repository on your local machine that contains various files and a CLI to help you validate and submit your predictions. The Hugging Face Hub uses [Git Large File Storage (LFS)](https://git-lfs.github.com) to manage large files, so first install it if you don't have it already. For example, on macOS you can run:
|
20 |
|
21 |
```bash
|
22 |
+
brew install git-lfs
|
23 |
+
git lfs install
|
24 |
+
```
|
25 |
+
|
26 |
+
Next, run the following commands to create the repository. We recommend creating a Python virtual environment for the project, e.g. with Anaconda:
|
27 |
+
|
28 |
+
```bash
|
29 |
+
# Create and activate a virtual environment
|
30 |
+
conda create -n raft python=3.8 && conda activate raft
|
31 |
+
# Install the following libraries
|
32 |
pip install cookiecutter huggingface-hub==0.0.16
|
33 |
# Create the template repository
|
34 |
cookiecutter git+https://huggingface.co/datasets/ought/raft-submission
|
|
|
95 |
|
96 |
### 3. Install the dependencies
|
97 |
|
98 |
+
The final step is to install the project's dependencies:
|
99 |
|
100 |
```bash
|
101 |
# Navigate to the template repository
|
102 |
cd my-raft-submissions
|
|
|
|
|
103 |
# Install dependencies
|
104 |
python -m pip install -r requirements.txt
|
105 |
```
|
|
|
131 |
* ID (int)
|
132 |
* Label (string)
|
133 |
|
134 |
+
See the dummy predictions in the `data` folder for examples with the expected format. Here is a simple example that creates a majority-class baseline:
|
135 |
+
|
136 |
+
```python
|
137 |
+
from pathlib import Path
|
138 |
+
import pandas as pd
|
139 |
+
from collections import Counter
|
140 |
+
from datasets import load_dataset, get_dataset_config_names
|
141 |
+
|
142 |
+
tasks = get_dataset_config_names("ought/raft")
|
143 |
+
|
144 |
+
for task in tasks:
|
145 |
+
# Load dataset
|
146 |
+
raft_subset = load_dataset("ought/raft", task)
|
147 |
+
# Compute majority class over training set
|
148 |
+
counter = Counter(raft_subset["train"]["Label"])
|
149 |
+
majority_class = counter.most_common(1)[0][0]
|
150 |
+
# Load predictions file
|
151 |
+
preds = pd.read_csv(f"data/{task}/predictions.csv")
|
152 |
+
# Convert label IDs to label names
|
153 |
+
preds["Label"] = raft_subset["train"].features["Label"].int2str(majority_class)
|
154 |
+
# Save predictions
|
155 |
+
preds.to_csv(f"data/{task}/predictions.csv", index=False)
|
156 |
+
```
|
157 |
+
|
158 |
+
As you can see in the example, each `predictions.csv` file should be stored in the task's subfolder in `data` and at the end you should have something like the following:
|
159 |
|
160 |
```
|
161 |
data
|
{{cookiecutter.repo_name}}/README.md
CHANGED
@@ -29,7 +29,31 @@ For each task in RAFT, you should create a CSV file called `predictions.csv` wit
|
|
29 |
* ID (int)
|
30 |
* Label (string)
|
31 |
|
32 |
-
See the dummy predictions in the `data` folder for examples with the expected format.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
```
|
35 |
data
|
|
|
29 |
* ID (int)
|
30 |
* Label (string)
|
31 |
|
32 |
+
See the dummy predictions in the `data` folder for examples with the expected format. Here is a simple example that creates a majority-class baseline:
|
33 |
+
|
34 |
+
```python
|
35 |
+
from pathlib import Path
|
36 |
+
import pandas as pd
|
37 |
+
from collections import Counter
|
38 |
+
from datasets import load_dataset, get_dataset_config_names
|
39 |
+
|
40 |
+
tasks = get_dataset_config_names("ought/raft")
|
41 |
+
|
42 |
+
for task in tasks:
|
43 |
+
# Load dataset
|
44 |
+
raft_subset = load_dataset("ought/raft", task)
|
45 |
+
# Compute majority class over training set
|
46 |
+
counter = Counter(raft_subset["train"]["Label"])
|
47 |
+
majority_class = counter.most_common(1)[0][0]
|
48 |
+
# Load predictions file
|
49 |
+
preds = pd.read_csv(f"data/{task}/predictions.csv")
|
50 |
+
# Convert label IDs to label names
|
51 |
+
preds["Label"] = raft_subset["train"].features["Label"].int2str(majority_class)
|
52 |
+
# Save predictions
|
53 |
+
preds.to_csv(f"data/{task}/predictions.csv", index=False)
|
54 |
+
```
|
55 |
+
|
56 |
+
As you can see in the example, each `predictions.csv` file should be stored in the task's subfolder in `data` and at the end you should have something like the following:
|
57 |
|
58 |
```
|
59 |
data
|
{{cookiecutter.repo_name}}/cli.py
CHANGED
@@ -70,9 +70,8 @@ def validate():
|
|
70 |
|
71 |
@app.command()
|
72 |
def submit():
|
73 |
-
# TODO(lewtun): Replace with subprocess.run and only add the exact files we need for evaluation
|
74 |
subprocess.call("git pull origin main".split())
|
75 |
-
subprocess.call(["git", "add", "
|
76 |
subprocess.call(["git", "commit", "-m", "Submission"])
|
77 |
subprocess.call(["git", "push"])
|
78 |
|
|
|
70 |
|
71 |
@app.command()
|
72 |
def submit():
|
|
|
73 |
subprocess.call("git pull origin main".split())
|
74 |
+
subprocess.call(["git", "add", "'*predictions.csv'"])
|
75 |
subprocess.call(["git", "commit", "-m", "Submission"])
|
76 |
subprocess.call(["git", "push"])
|
77 |
|