File size: 3,718 Bytes
2dcd69b f062a20 2dcd69b 355708a 2dcd69b 5ffef31 2dcd69b 5ffef31 2dcd69b f062a20 02eb343 f062a20 02eb343 f062a20 02eb343 f062a20 2dcd69b ffda6b4 2dcd69b ffda6b4 02eb343 2dcd69b 02eb343 2dcd69b ffda6b4 2dcd69b 02eb343 2dcd69b f062a20 2dcd69b 35094cb 2dcd69b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
import datetime
import re
import subprocess
from pathlib import Path
import pandas as pd
import typer
from datasets import get_dataset_config_names, load_dataset
CSV_SCHEMA = {
"banking_77": (5000, 2),
"overruling": (2350, 2),
"semiconductor_org_types": (449, 2),
"ade_corpus_v2": (5000, 2),
"twitter_complaints": (3399, 2),
"neurips_impact_statement_risks": (150, 2),
"systematic_review_inclusion": (2243, 2),
"terms_of_service": (5000, 2),
"tai_safety_research": (1639, 2),
"one_stop_english": (516, 2),
"tweet_eval_hate": (2966, 2),
}
app = typer.Typer()
def _update_submission_name(submission_name: str):
replacement = ""
with open("README.md", "r", encoding="utf-8") as f:
lines = f.readlines()
for line in lines:
if line.startswith("submission_name:"):
changes = re.sub(
r"submission_name:.+", f"submission_name: {submission_name}", line
)
replacement += changes
else:
replacement += line
with open("README.md", "w", encoding="utf-8") as f:
f.write(replacement)
@app.command()
def validate():
# TODO(lewtun): Consider using great_expectations for the data validation
tasks = get_dataset_config_names("ought/raft")
# Check that all the expected files exist
prediction_files = list(Path("data").rglob("predictions.csv"))
mismatched_files = set(tasks).symmetric_difference(
set([f.parent.name for f in prediction_files])
)
if mismatched_files:
raise ValueError(
f"Incorrect number of files! Expected {len(tasks)} files, but got {len(prediction_files)}."
)
# Check all files have the expected shape (number of rows, number of columns)
# TODO(lewtun): Add a check for the specific IDs per file
shape_errors = []
column_errors = []
for prediction_file in prediction_files:
df = pd.read_csv(prediction_file)
incorrect_shape = df.shape != CSV_SCHEMA[prediction_file.parent.name]
if incorrect_shape:
shape_errors.append(prediction_file)
incorrect_columns = sorted(df.columns) != ["ID", "Label"]
if incorrect_columns:
column_errors.append(prediction_file)
if shape_errors:
raise ValueError(f"Incorrect CSV shapes in files: {shape_errors}")
if column_errors:
raise ValueError(f"Incorrect CSV columns in files: {column_errors}")
# Check we can load the dataset for each task
load_errors = []
for task in tasks:
try:
_ = load_dataset("../{{cookiecutter.repo_name}}", task)
except Exception as e:
load_errors.append(e)
if load_errors:
raise ValueError(f"Could not load predictions! Errors: {load_errors}")
typer.echo("All submission files validated! ✨ 🚀 ✨")
typer.echo("Now you can make a submission 🤗")
@app.command()
def submit(
submission_name: str = typer.Option(
..., prompt="Please provide a name for your submission, e.g. GPT-4 😁"
)
):
subprocess.call("git pull origin main".split())
_update_submission_name(submission_name)
subprocess.call(["git", "add", "data/*predictions.csv", "README.md"])
subprocess.call(["git", "commit", "-m", f"Submission: {submission_name} "])
subprocess.call(["git", "push"])
today = datetime.date.today()
# MON = 0, SUN = 6 -> SUN = 0 .. SAT = 6
idx = (today.weekday() + 1) % 7
sun = today + datetime.timedelta(7 - idx)
typer.echo("Submission successful! 🎉 🥳 🎉")
typer.echo(f"Your submission will be evaluated on {sun:%A %d %B %Y} at 12:00 UTC ⏳")
if __name__ == "__main__":
app()
|