Upload cuda_inference_timm_image-classification_timm/resnet50.a1_in1k/benchmark.json with huggingface_hub
Browse files
cuda_inference_timm_image-classification_timm/resnet50.a1_in1k/benchmark.json
CHANGED
@@ -3,7 +3,7 @@
|
|
3 |
"name": "cuda_inference_timm_image-classification_timm/resnet50.a1_in1k",
|
4 |
"backend": {
|
5 |
"name": "pytorch",
|
6 |
-
"version": "2.
|
7 |
"_target_": "optimum_benchmark.backends.pytorch.backend.PyTorchBackend",
|
8 |
"task": "image-classification",
|
9 |
"library": "timm",
|
@@ -11,7 +11,7 @@
|
|
11 |
"model": "timm/resnet50.a1_in1k",
|
12 |
"processor": "timm/resnet50.a1_in1k",
|
13 |
"device": "cuda",
|
14 |
-
"device_ids": "
|
15 |
"seed": 42,
|
16 |
"inter_op_num_threads": null,
|
17 |
"intra_op_num_threads": null,
|
@@ -111,24 +111,24 @@
|
|
111 |
"load": {
|
112 |
"memory": {
|
113 |
"unit": "MB",
|
114 |
-
"max_ram":
|
115 |
"max_global_vram": 68702.69952,
|
116 |
-
"max_process_vram":
|
117 |
"max_reserved": 123.731968,
|
118 |
"max_allocated": 102.475264
|
119 |
},
|
120 |
"latency": {
|
121 |
"unit": "s",
|
122 |
"count": 1,
|
123 |
-
"total": 8.
|
124 |
-
"mean": 8.
|
125 |
"stdev": 0.0,
|
126 |
-
"p50": 8.
|
127 |
-
"p90": 8.
|
128 |
-
"p95": 8.
|
129 |
-
"p99": 8.
|
130 |
"values": [
|
131 |
-
8.
|
132 |
]
|
133 |
},
|
134 |
"throughput": null,
|
@@ -138,165 +138,156 @@
|
|
138 |
"forward": {
|
139 |
"memory": {
|
140 |
"unit": "MB",
|
141 |
-
"max_ram":
|
142 |
"max_global_vram": 68702.69952,
|
143 |
-
"max_process_vram":
|
144 |
"max_reserved": 148.897792,
|
145 |
"max_allocated": 113.516032
|
146 |
},
|
147 |
"latency": {
|
148 |
"unit": "s",
|
149 |
-
"count":
|
150 |
-
"total": 0.
|
151 |
-
"mean": 0.
|
152 |
-
"stdev": 0.
|
153 |
-
"p50": 0.
|
154 |
-
"p90": 0.
|
155 |
-
"p95": 0.
|
156 |
-
"p99": 0.
|
157 |
"values": [
|
158 |
-
0.
|
159 |
-
0.
|
160 |
-
0.
|
161 |
-
0.
|
162 |
-
0.
|
163 |
-
0.
|
164 |
-
0.
|
165 |
-
0.
|
166 |
-
0.
|
167 |
-
0.
|
168 |
-
0.
|
169 |
-
0.
|
170 |
-
0.
|
171 |
-
0.
|
172 |
-
0.
|
173 |
-
0.
|
174 |
-
0.
|
175 |
-
0.
|
176 |
-
0.
|
177 |
-
0.
|
178 |
-
0.
|
179 |
-
0.
|
180 |
-
0.
|
181 |
-
0.
|
182 |
-
0.
|
183 |
-
0.
|
184 |
-
0.
|
185 |
-
0.
|
186 |
-
0.
|
187 |
-
0.
|
188 |
-
0.
|
189 |
-
0.
|
190 |
-
0.
|
191 |
-
0.
|
192 |
-
0.
|
193 |
-
0.
|
194 |
-
0.
|
195 |
-
0.
|
196 |
-
0.
|
197 |
-
0.
|
198 |
-
0.
|
199 |
-
0.
|
200 |
-
0.
|
201 |
-
0.
|
202 |
-
0.
|
203 |
-
0.
|
204 |
-
0.
|
205 |
-
0.
|
206 |
-
0.
|
207 |
-
0.
|
208 |
-
0.
|
209 |
-
0.
|
210 |
-
0.
|
211 |
-
0.
|
212 |
-
0.
|
213 |
-
0.
|
214 |
-
0.
|
215 |
-
0.
|
216 |
-
0.
|
217 |
-
0.
|
218 |
-
0.
|
219 |
-
0.
|
220 |
-
0.
|
221 |
-
0.
|
222 |
-
0.
|
223 |
-
0.
|
224 |
-
0.
|
225 |
-
0.
|
226 |
-
0.
|
227 |
-
0.
|
228 |
-
0.
|
229 |
-
0.
|
230 |
-
0.
|
231 |
-
0.
|
232 |
-
0.
|
233 |
-
0.
|
234 |
-
0.
|
235 |
-
0.
|
236 |
-
0.
|
237 |
-
0.
|
238 |
-
0.
|
239 |
-
0.
|
240 |
-
0.
|
241 |
-
0.
|
242 |
-
0.
|
243 |
-
0.
|
244 |
-
0.
|
245 |
-
0.
|
246 |
-
0.
|
247 |
-
0.
|
248 |
-
0.
|
249 |
-
0.
|
250 |
-
0.
|
251 |
-
0.
|
252 |
-
0.
|
253 |
-
0.
|
254 |
-
0.
|
255 |
-
0.
|
256 |
-
0.
|
257 |
-
0.
|
258 |
-
0.
|
259 |
-
0.
|
260 |
-
0.
|
261 |
-
0.
|
262 |
-
0.
|
263 |
-
0.
|
264 |
-
0.
|
265 |
-
0.
|
266 |
-
0.
|
267 |
-
0.
|
268 |
-
0.
|
269 |
-
0.
|
270 |
-
0.
|
271 |
-
0.
|
272 |
-
0.
|
273 |
-
0.
|
274 |
-
0.
|
275 |
-
0.
|
276 |
-
0.
|
277 |
-
0.
|
278 |
-
0.
|
279 |
-
0.
|
280 |
-
0.
|
281 |
-
0.
|
282 |
-
0.
|
283 |
-
0.
|
284 |
-
0.
|
285 |
-
0.
|
286 |
-
0.007186859130859375,
|
287 |
-
0.007056780815124512,
|
288 |
-
0.00705518102645874,
|
289 |
-
0.007072461128234863,
|
290 |
-
0.007060300827026367,
|
291 |
-
0.007061580181121826,
|
292 |
-
0.007086540222167969,
|
293 |
-
0.0070731000900268555,
|
294 |
-
0.007081901073455811
|
295 |
]
|
296 |
},
|
297 |
"throughput": {
|
298 |
"unit": "samples/s",
|
299 |
-
"value":
|
300 |
},
|
301 |
"energy": null,
|
302 |
"efficiency": null
|
|
|
3 |
"name": "cuda_inference_timm_image-classification_timm/resnet50.a1_in1k",
|
4 |
"backend": {
|
5 |
"name": "pytorch",
|
6 |
+
"version": "2.4.1+rocm6.1",
|
7 |
"_target_": "optimum_benchmark.backends.pytorch.backend.PyTorchBackend",
|
8 |
"task": "image-classification",
|
9 |
"library": "timm",
|
|
|
11 |
"model": "timm/resnet50.a1_in1k",
|
12 |
"processor": "timm/resnet50.a1_in1k",
|
13 |
"device": "cuda",
|
14 |
+
"device_ids": "4",
|
15 |
"seed": 42,
|
16 |
"inter_op_num_threads": null,
|
17 |
"intra_op_num_threads": null,
|
|
|
111 |
"load": {
|
112 |
"memory": {
|
113 |
"unit": "MB",
|
114 |
+
"max_ram": 1470.2592,
|
115 |
"max_global_vram": 68702.69952,
|
116 |
+
"max_process_vram": 0.0,
|
117 |
"max_reserved": 123.731968,
|
118 |
"max_allocated": 102.475264
|
119 |
},
|
120 |
"latency": {
|
121 |
"unit": "s",
|
122 |
"count": 1,
|
123 |
+
"total": 8.078953125,
|
124 |
+
"mean": 8.078953125,
|
125 |
"stdev": 0.0,
|
126 |
+
"p50": 8.078953125,
|
127 |
+
"p90": 8.078953125,
|
128 |
+
"p95": 8.078953125,
|
129 |
+
"p99": 8.078953125,
|
130 |
"values": [
|
131 |
+
8.078953125
|
132 |
]
|
133 |
},
|
134 |
"throughput": null,
|
|
|
138 |
"forward": {
|
139 |
"memory": {
|
140 |
"unit": "MB",
|
141 |
+
"max_ram": 1555.574784,
|
142 |
"max_global_vram": 68702.69952,
|
143 |
+
"max_process_vram": 0.0,
|
144 |
"max_reserved": 148.897792,
|
145 |
"max_allocated": 113.516032
|
146 |
},
|
147 |
"latency": {
|
148 |
"unit": "s",
|
149 |
+
"count": 128,
|
150 |
+
"total": 0.9963833065032959,
|
151 |
+
"mean": 0.007784244582056999,
|
152 |
+
"stdev": 0.0003685639911602619,
|
153 |
+
"p50": 0.007665731191635132,
|
154 |
+
"p90": 0.008096770191192627,
|
155 |
+
"p95": 0.008421000957489013,
|
156 |
+
"p99": 0.008592459239959717,
|
157 |
"values": [
|
158 |
+
0.008286528587341309,
|
159 |
+
0.008060769081115722,
|
160 |
+
0.007843970775604248,
|
161 |
+
0.008004770278930665,
|
162 |
+
0.007963010787963867,
|
163 |
+
0.007755170822143555,
|
164 |
+
0.007594212055206299,
|
165 |
+
0.007560451030731202,
|
166 |
+
0.007507011890411377,
|
167 |
+
0.007488451957702637,
|
168 |
+
0.007485412120819092,
|
169 |
+
0.0074666919708251955,
|
170 |
+
0.007492611885070801,
|
171 |
+
0.0074337320327758786,
|
172 |
+
0.007458531856536865,
|
173 |
+
0.010555959701538086,
|
174 |
+
0.007740770816802979,
|
175 |
+
0.00754445219039917,
|
176 |
+
0.007520932197570801,
|
177 |
+
0.007705251216888428,
|
178 |
+
0.007503171920776367,
|
179 |
+
0.0074759721755981445,
|
180 |
+
0.007661730766296387,
|
181 |
+
0.007490211963653564,
|
182 |
+
0.007521252155303955,
|
183 |
+
0.00766093111038208,
|
184 |
+
0.007865090847015381,
|
185 |
+
0.007863329887390138,
|
186 |
+
0.007996769905090332,
|
187 |
+
0.007920609951019288,
|
188 |
+
0.007945250034332276,
|
189 |
+
0.007990690231323242,
|
190 |
+
0.007894690036773682,
|
191 |
+
0.007914050102233887,
|
192 |
+
0.007701731204986572,
|
193 |
+
0.007683170795440674,
|
194 |
+
0.007717891216278076,
|
195 |
+
0.008035490036010742,
|
196 |
+
0.00790684986114502,
|
197 |
+
0.007948450088500977,
|
198 |
+
0.007699010848999023,
|
199 |
+
0.00750189208984375,
|
200 |
+
0.007500611782073975,
|
201 |
+
0.007704451084136963,
|
202 |
+
0.007712451934814453,
|
203 |
+
0.007812931060791015,
|
204 |
+
0.007956769943237305,
|
205 |
+
0.007903170108795167,
|
206 |
+
0.007922369956970215,
|
207 |
+
0.00787437105178833,
|
208 |
+
0.00806300926208496,
|
209 |
+
0.007961249828338623,
|
210 |
+
0.008058850288391112,
|
211 |
+
0.007933730125427247,
|
212 |
+
0.007923490047454834,
|
213 |
+
0.007957409858703614,
|
214 |
+
0.008100130081176759,
|
215 |
+
0.007956610202789307,
|
216 |
+
0.00795021104812622,
|
217 |
+
0.008170370101928712,
|
218 |
+
0.008109088897705077,
|
219 |
+
0.007938210010528565,
|
220 |
+
0.008095330238342285,
|
221 |
+
0.007890851020812988,
|
222 |
+
0.008082368850708007,
|
223 |
+
0.00804444980621338,
|
224 |
+
0.008133249282836914,
|
225 |
+
0.007977890014648438,
|
226 |
+
0.007943329811096191,
|
227 |
+
0.008128450393676758,
|
228 |
+
0.00802428913116455,
|
229 |
+
0.00792301082611084,
|
230 |
+
0.007832130908966065,
|
231 |
+
0.007677250862121582,
|
232 |
+
0.0076620512008667,
|
233 |
+
0.007669411182403565,
|
234 |
+
0.007518372058868408,
|
235 |
+
0.00750573205947876,
|
236 |
+
0.007508292198181153,
|
237 |
+
0.007517092227935791,
|
238 |
+
0.0075167717933654786,
|
239 |
+
0.007513251781463623,
|
240 |
+
0.00752973222732544,
|
241 |
+
0.007512132167816162,
|
242 |
+
0.0075290918350219725,
|
243 |
+
0.007535011768341065,
|
244 |
+
0.0075223708152771,
|
245 |
+
0.007518692016601563,
|
246 |
+
0.007517251968383789,
|
247 |
+
0.007534211158752442,
|
248 |
+
0.007514212131500244,
|
249 |
+
0.007495652198791504,
|
250 |
+
0.00752717113494873,
|
251 |
+
0.00753629207611084,
|
252 |
+
0.007513572216033935,
|
253 |
+
0.007510851860046386,
|
254 |
+
0.007527172088623047,
|
255 |
+
0.0075188522338867185,
|
256 |
+
0.007529572010040283,
|
257 |
+
0.007536931991577149,
|
258 |
+
0.0075214109420776365,
|
259 |
+
0.007527011871337891,
|
260 |
+
0.007527812004089356,
|
261 |
+
0.007510531902313233,
|
262 |
+
0.007531332015991211,
|
263 |
+
0.007511171817779541,
|
264 |
+
0.007512931823730469,
|
265 |
+
0.007638370990753174,
|
266 |
+
0.0076514921188354495,
|
267 |
+
0.007626370906829834,
|
268 |
+
0.007597250938415527,
|
269 |
+
0.007619011878967285,
|
270 |
+
0.007611492156982422,
|
271 |
+
0.007657731056213379,
|
272 |
+
0.007632451057434082,
|
273 |
+
0.007630691051483154,
|
274 |
+
0.007619011878967285,
|
275 |
+
0.0076174111366271976,
|
276 |
+
0.007609890937805176,
|
277 |
+
0.007629251956939697,
|
278 |
+
0.007818050861358642,
|
279 |
+
0.008544608116149903,
|
280 |
+
0.008551008224487304,
|
281 |
+
0.00859500789642334,
|
282 |
+
0.008561887741088868,
|
283 |
+
0.00858556842803955,
|
284 |
+
0.008493409156799317,
|
285 |
+
0.008002368927001954
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
286 |
]
|
287 |
},
|
288 |
"throughput": {
|
289 |
"unit": "samples/s",
|
290 |
+
"value": 128.4646171453863
|
291 |
},
|
292 |
"energy": null,
|
293 |
"efficiency": null
|