Upload cuda_inference_timm_image-classification_timm/resnet50.a1_in1k/benchmark.json with huggingface_hub
Browse files
cuda_inference_timm_image-classification_timm/resnet50.a1_in1k/benchmark.json
CHANGED
@@ -3,7 +3,7 @@
|
|
3 |
"name": "cuda_inference_timm_image-classification_timm/resnet50.a1_in1k",
|
4 |
"backend": {
|
5 |
"name": "pytorch",
|
6 |
-
"version": "2.
|
7 |
"_target_": "optimum_benchmark.backends.pytorch.backend.PyTorchBackend",
|
8 |
"task": "image-classification",
|
9 |
"library": "timm",
|
@@ -11,7 +11,7 @@
|
|
11 |
"model": "timm/resnet50.a1_in1k",
|
12 |
"processor": "timm/resnet50.a1_in1k",
|
13 |
"device": "cuda",
|
14 |
-
"device_ids": "
|
15 |
"seed": 42,
|
16 |
"inter_op_num_threads": null,
|
17 |
"intra_op_num_threads": null,
|
@@ -95,7 +95,7 @@
|
|
95 |
"optimum_benchmark_commit": null,
|
96 |
"transformers_version": "4.44.2",
|
97 |
"transformers_commit": null,
|
98 |
-
"accelerate_version": "0.
|
99 |
"accelerate_commit": null,
|
100 |
"diffusers_version": "0.30.2",
|
101 |
"diffusers_commit": null,
|
@@ -111,24 +111,24 @@
|
|
111 |
"load": {
|
112 |
"memory": {
|
113 |
"unit": "MB",
|
114 |
-
"max_ram":
|
115 |
-
"max_global_vram":
|
116 |
-
"max_process_vram":
|
117 |
"max_reserved": 123.731968,
|
118 |
"max_allocated": 102.475264
|
119 |
},
|
120 |
"latency": {
|
121 |
"unit": "s",
|
122 |
"count": 1,
|
123 |
-
"total":
|
124 |
-
"mean":
|
125 |
"stdev": 0.0,
|
126 |
-
"p50":
|
127 |
-
"p90":
|
128 |
-
"p95":
|
129 |
-
"p99":
|
130 |
"values": [
|
131 |
-
|
132 |
]
|
133 |
},
|
134 |
"throughput": null,
|
@@ -138,156 +138,169 @@
|
|
138 |
"forward": {
|
139 |
"memory": {
|
140 |
"unit": "MB",
|
141 |
-
"max_ram":
|
142 |
-
"max_global_vram":
|
143 |
-
"max_process_vram":
|
144 |
"max_reserved": 148.897792,
|
145 |
"max_allocated": 113.516032
|
146 |
},
|
147 |
"latency": {
|
148 |
"unit": "s",
|
149 |
-
"count":
|
150 |
-
"total":
|
151 |
-
"mean": 0.
|
152 |
-
"stdev": 0.
|
153 |
-
"p50": 0.
|
154 |
-
"p90": 0.
|
155 |
-
"p95": 0.
|
156 |
-
"p99": 0.
|
157 |
"values": [
|
158 |
-
0.
|
159 |
-
0.
|
160 |
-
0.
|
161 |
-
0.
|
162 |
-
0.
|
163 |
-
0.
|
164 |
-
0.
|
165 |
-
0.
|
166 |
-
0.
|
167 |
-
0.
|
168 |
-
0.
|
169 |
-
0.
|
170 |
-
0.
|
171 |
-
0.
|
172 |
-
0.
|
173 |
-
0.
|
174 |
-
0.
|
175 |
-
0.
|
176 |
-
0.
|
177 |
-
0.
|
178 |
-
0.
|
179 |
-
0.
|
180 |
-
0.
|
181 |
-
0.
|
182 |
-
0.
|
183 |
-
0.
|
184 |
-
0.
|
185 |
-
0.
|
186 |
-
0.
|
187 |
-
0.
|
188 |
-
0.
|
189 |
-
0.
|
190 |
-
0.
|
191 |
-
0.
|
192 |
-
0.
|
193 |
-
0.
|
194 |
-
0.
|
195 |
-
0.
|
196 |
-
0.
|
197 |
-
0.
|
198 |
-
0.
|
199 |
-
0.
|
200 |
-
0.
|
201 |
-
0.
|
202 |
-
0.
|
203 |
-
0.
|
204 |
-
0.
|
205 |
-
0.
|
206 |
-
0.
|
207 |
-
0.
|
208 |
-
0.
|
209 |
-
0.
|
210 |
-
0.
|
211 |
-
0.
|
212 |
-
0.
|
213 |
-
0.
|
214 |
-
0.
|
215 |
-
0.
|
216 |
-
0.
|
217 |
-
0.
|
218 |
-
0.
|
219 |
-
0.
|
220 |
-
0.
|
221 |
-
0.
|
222 |
-
0.
|
223 |
-
0.
|
224 |
-
0.
|
225 |
-
0.
|
226 |
-
0.
|
227 |
-
0.
|
228 |
-
0.
|
229 |
-
0.
|
230 |
-
0.
|
231 |
-
0.
|
232 |
-
0.
|
233 |
-
0.
|
234 |
-
0.
|
235 |
-
0.
|
236 |
-
0.
|
237 |
-
0.
|
238 |
-
0.
|
239 |
-
0.
|
240 |
-
0.
|
241 |
-
0.
|
242 |
-
0.
|
243 |
-
0.
|
244 |
-
0.
|
245 |
-
0.
|
246 |
-
0.
|
247 |
-
0.
|
248 |
-
0.
|
249 |
-
0.
|
250 |
-
0.
|
251 |
-
0.
|
252 |
-
0.
|
253 |
-
0.
|
254 |
-
0.
|
255 |
-
0.
|
256 |
-
0.
|
257 |
-
0.
|
258 |
-
0.
|
259 |
-
0.
|
260 |
-
0.
|
261 |
-
0.
|
262 |
-
0.
|
263 |
-
0.
|
264 |
-
0.
|
265 |
-
0.
|
266 |
-
0.
|
267 |
-
0.
|
268 |
-
0.
|
269 |
-
0.
|
270 |
-
0.
|
271 |
-
0.
|
272 |
-
0.
|
273 |
-
0.
|
274 |
-
0.
|
275 |
-
0.
|
276 |
-
0.
|
277 |
-
0.
|
278 |
-
0.
|
279 |
-
0.
|
280 |
-
0.
|
281 |
-
0.
|
282 |
-
0.
|
283 |
-
0.
|
284 |
-
0.
|
285 |
-
0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
286 |
]
|
287 |
},
|
288 |
"throughput": {
|
289 |
"unit": "samples/s",
|
290 |
-
"value":
|
291 |
},
|
292 |
"energy": null,
|
293 |
"efficiency": null
|
|
|
3 |
"name": "cuda_inference_timm_image-classification_timm/resnet50.a1_in1k",
|
4 |
"backend": {
|
5 |
"name": "pytorch",
|
6 |
+
"version": "2.3.1+rocm5.7",
|
7 |
"_target_": "optimum_benchmark.backends.pytorch.backend.PyTorchBackend",
|
8 |
"task": "image-classification",
|
9 |
"library": "timm",
|
|
|
11 |
"model": "timm/resnet50.a1_in1k",
|
12 |
"processor": "timm/resnet50.a1_in1k",
|
13 |
"device": "cuda",
|
14 |
+
"device_ids": "4",
|
15 |
"seed": 42,
|
16 |
"inter_op_num_threads": null,
|
17 |
"intra_op_num_threads": null,
|
|
|
95 |
"optimum_benchmark_commit": null,
|
96 |
"transformers_version": "4.44.2",
|
97 |
"transformers_commit": null,
|
98 |
+
"accelerate_version": "0.34.0",
|
99 |
"accelerate_commit": null,
|
100 |
"diffusers_version": "0.30.2",
|
101 |
"diffusers_commit": null,
|
|
|
111 |
"load": {
|
112 |
"memory": {
|
113 |
"unit": "MB",
|
114 |
+
"max_ram": 1107.767296,
|
115 |
+
"max_global_vram": 68702.69952,
|
116 |
+
"max_process_vram": 45022.498816,
|
117 |
"max_reserved": 123.731968,
|
118 |
"max_allocated": 102.475264
|
119 |
},
|
120 |
"latency": {
|
121 |
"unit": "s",
|
122 |
"count": 1,
|
123 |
+
"total": 7.897869140625,
|
124 |
+
"mean": 7.897869140625,
|
125 |
"stdev": 0.0,
|
126 |
+
"p50": 7.897869140625,
|
127 |
+
"p90": 7.897869140625,
|
128 |
+
"p95": 7.897869140625,
|
129 |
+
"p99": 7.897869140625,
|
130 |
"values": [
|
131 |
+
7.897869140625
|
132 |
]
|
133 |
},
|
134 |
"throughput": null,
|
|
|
138 |
"forward": {
|
139 |
"memory": {
|
140 |
"unit": "MB",
|
141 |
+
"max_ram": 1192.157184,
|
142 |
+
"max_global_vram": 68702.69952,
|
143 |
+
"max_process_vram": 96783.888384,
|
144 |
"max_reserved": 148.897792,
|
145 |
"max_allocated": 113.516032
|
146 |
},
|
147 |
"latency": {
|
148 |
"unit": "s",
|
149 |
+
"count": 141,
|
150 |
+
"total": 1.0009649419784545,
|
151 |
+
"mean": 0.007099042141691167,
|
152 |
+
"stdev": 0.0014881372331400084,
|
153 |
+
"p50": 0.0068875041007995606,
|
154 |
+
"p90": 0.007783821105957031,
|
155 |
+
"p95": 0.007820140838623047,
|
156 |
+
"p99": 0.01532674751281738,
|
157 |
"values": [
|
158 |
+
0.008746058464050292,
|
159 |
+
0.0071764631271362305,
|
160 |
+
0.006950862884521484,
|
161 |
+
0.006941422939300537,
|
162 |
+
0.006893904209136963,
|
163 |
+
0.0068974227905273435,
|
164 |
+
0.0069563031196594235,
|
165 |
+
0.006883663177490234,
|
166 |
+
0.006917263031005859,
|
167 |
+
0.007226862907409668,
|
168 |
+
0.006905582904815674,
|
169 |
+
0.006941742897033691,
|
170 |
+
0.006896783828735351,
|
171 |
+
0.006955822944641113,
|
172 |
+
0.006939023017883301,
|
173 |
+
0.006882223129272461,
|
174 |
+
0.006909903049468994,
|
175 |
+
0.0069303841590881345,
|
176 |
+
0.006900144100189209,
|
177 |
+
0.006881422996520996,
|
178 |
+
0.006948623180389404,
|
179 |
+
0.0068788638114929196,
|
180 |
+
0.006872464179992676,
|
181 |
+
0.006830382823944092,
|
182 |
+
0.00688702392578125,
|
183 |
+
0.006858223915100097,
|
184 |
+
0.0069823827743530275,
|
185 |
+
0.007854220867156982,
|
186 |
+
0.00723518180847168,
|
187 |
+
0.0069862232208251955,
|
188 |
+
0.00701166296005249,
|
189 |
+
0.006886703968048096,
|
190 |
+
0.006932623863220215,
|
191 |
+
0.006882223129272461,
|
192 |
+
0.006951663017272949,
|
193 |
+
0.006903502941131592,
|
194 |
+
0.006859024047851562,
|
195 |
+
0.007207501888275147,
|
196 |
+
0.006853903770446777,
|
197 |
+
0.006885903835296631,
|
198 |
+
0.0068924641609191895,
|
199 |
+
0.006869263172149658,
|
200 |
+
0.00691566276550293,
|
201 |
+
0.0069212641716003415,
|
202 |
+
0.006916944026947021,
|
203 |
+
0.006855183124542237,
|
204 |
+
0.006894702911376953,
|
205 |
+
0.006874063968658447,
|
206 |
+
0.006869102954864502,
|
207 |
+
0.006882382869720459,
|
208 |
+
0.006889903068542481,
|
209 |
+
0.006868144035339355,
|
210 |
+
0.006868463039398193,
|
211 |
+
0.006842063903808594,
|
212 |
+
0.0068636641502380375,
|
213 |
+
0.0068521428108215335,
|
214 |
+
0.015145403861999512,
|
215 |
+
0.0022919940948486327,
|
216 |
+
0.00592094612121582,
|
217 |
+
0.006885423183441162,
|
218 |
+
0.006878703117370605,
|
219 |
+
0.006843344211578369,
|
220 |
+
0.006885103225708008,
|
221 |
+
0.0069935832023620605,
|
222 |
+
0.006899182796478272,
|
223 |
+
0.006875823020935059,
|
224 |
+
0.0068875041007995606,
|
225 |
+
0.006893743038177491,
|
226 |
+
0.006836782932281494,
|
227 |
+
0.006855343818664551,
|
228 |
+
0.006874543190002441,
|
229 |
+
0.006855662822723389,
|
230 |
+
0.006841904163360596,
|
231 |
+
0.006859182834625244,
|
232 |
+
0.006864462852478027,
|
233 |
+
0.00683406400680542,
|
234 |
+
0.0068380627632141115,
|
235 |
+
0.006849103927612304,
|
236 |
+
0.0068516631126403806,
|
237 |
+
0.006837742805480957,
|
238 |
+
0.006825104236602784,
|
239 |
+
0.006844943046569824,
|
240 |
+
0.006836944103240967,
|
241 |
+
0.006803343772888184,
|
242 |
+
0.006833103179931641,
|
243 |
+
0.006859504222869873,
|
244 |
+
0.006839023113250732,
|
245 |
+
0.006843503952026367,
|
246 |
+
0.015447643280029297,
|
247 |
+
0.00229471492767334,
|
248 |
+
0.003420790910720825,
|
249 |
+
0.007180462837219239,
|
250 |
+
0.0068731031417846675,
|
251 |
+
0.006865744113922119,
|
252 |
+
0.006855663776397705,
|
253 |
+
0.006876303195953369,
|
254 |
+
0.006857103824615478,
|
255 |
+
0.006885903835296631,
|
256 |
+
0.006855183124542237,
|
257 |
+
0.006886703014373779,
|
258 |
+
0.006866384029388428,
|
259 |
+
0.006857903003692627,
|
260 |
+
0.006871983051300049,
|
261 |
+
0.0068686242103576664,
|
262 |
+
0.006865903854370117,
|
263 |
+
0.006880623817443848,
|
264 |
+
0.006882062911987305,
|
265 |
+
0.006969583034515381,
|
266 |
+
0.007820301055908203,
|
267 |
+
0.0078031811714172365,
|
268 |
+
0.007807981014251709,
|
269 |
+
0.007642541885375977,
|
270 |
+
0.007175181865692139,
|
271 |
+
0.0073097429275512694,
|
272 |
+
0.007372463226318359,
|
273 |
+
0.007248141765594482,
|
274 |
+
0.007785261154174805,
|
275 |
+
0.007807180881500244,
|
276 |
+
0.015947321891784667,
|
277 |
+
0.0022977540493011473,
|
278 |
+
0.006751503944396973,
|
279 |
+
0.007767981052398682,
|
280 |
+
0.007811981201171875,
|
281 |
+
0.007773740768432617,
|
282 |
+
0.007462701797485352,
|
283 |
+
0.0071423821449279785,
|
284 |
+
0.007905580997467042,
|
285 |
+
0.007812780857086182,
|
286 |
+
0.007783821105957031,
|
287 |
+
0.007820140838623047,
|
288 |
+
0.00767742109298706,
|
289 |
+
0.007301423072814941,
|
290 |
+
0.0073943819999694824,
|
291 |
+
0.007365421772003174,
|
292 |
+
0.007344461917877197,
|
293 |
+
0.007364141941070557,
|
294 |
+
0.0071300630569458,
|
295 |
+
0.007212622165679932,
|
296 |
+
0.007075023174285888,
|
297 |
+
0.007007981777191162,
|
298 |
+
0.006878222942352295
|
299 |
]
|
300 |
},
|
301 |
"throughput": {
|
302 |
"unit": "samples/s",
|
303 |
+
"value": 140.86407434141182
|
304 |
},
|
305 |
"energy": null,
|
306 |
"efficiency": null
|