Upload cuda_inference_timm_image-classification_timm/resnet50.a1_in1k/benchmark.json with huggingface_hub
Browse files
cuda_inference_timm_image-classification_timm/resnet50.a1_in1k/benchmark.json
CHANGED
@@ -3,7 +3,7 @@
|
|
3 |
"name": "cuda_inference_timm_image-classification_timm/resnet50.a1_in1k",
|
4 |
"backend": {
|
5 |
"name": "pytorch",
|
6 |
-
"version": "2.
|
7 |
"_target_": "optimum_benchmark.backends.pytorch.backend.PyTorchBackend",
|
8 |
"task": "image-classification",
|
9 |
"library": "timm",
|
@@ -111,24 +111,24 @@
|
|
111 |
"load": {
|
112 |
"memory": {
|
113 |
"unit": "MB",
|
114 |
-
"max_ram":
|
115 |
-
"max_global_vram":
|
116 |
-
"max_process_vram":
|
117 |
"max_reserved": 123.731968,
|
118 |
"max_allocated": 102.475264
|
119 |
},
|
120 |
"latency": {
|
121 |
"unit": "s",
|
122 |
"count": 1,
|
123 |
-
"total": 8.
|
124 |
-
"mean": 8.
|
125 |
"stdev": 0.0,
|
126 |
-
"p50": 8.
|
127 |
-
"p90": 8.
|
128 |
-
"p95": 8.
|
129 |
-
"p99": 8.
|
130 |
"values": [
|
131 |
-
8.
|
132 |
]
|
133 |
},
|
134 |
"throughput": null,
|
@@ -138,167 +138,160 @@
|
|
138 |
"forward": {
|
139 |
"memory": {
|
140 |
"unit": "MB",
|
141 |
-
"max_ram":
|
142 |
-
"max_global_vram":
|
143 |
-
"max_process_vram":
|
144 |
"max_reserved": 148.897792,
|
145 |
"max_allocated": 113.516032
|
146 |
},
|
147 |
"latency": {
|
148 |
"unit": "s",
|
149 |
-
"count":
|
150 |
-
"total": 0.
|
151 |
-
"mean": 0.
|
152 |
-
"stdev": 0.
|
153 |
-
"p50": 0.
|
154 |
-
"p90": 0.
|
155 |
-
"p95": 0.
|
156 |
-
"p99": 0.
|
157 |
"values": [
|
158 |
-
0.
|
159 |
-
0.
|
160 |
-
0.
|
161 |
-
0.
|
162 |
-
0.
|
163 |
-
0.
|
164 |
-
0.
|
165 |
-
0.
|
166 |
-
0.
|
167 |
-
0.
|
168 |
-
0.
|
169 |
-
0.
|
170 |
-
0.
|
171 |
-
0.
|
172 |
-
0.
|
173 |
-
0.
|
174 |
-
0.
|
175 |
-
0.
|
176 |
-
0.
|
177 |
-
0.
|
178 |
-
0.
|
179 |
-
0.
|
180 |
-
0.
|
181 |
-
0.
|
182 |
-
0.
|
183 |
-
0.
|
184 |
-
0.
|
185 |
-
0.
|
186 |
-
0.
|
187 |
-
0.
|
188 |
-
0.
|
189 |
-
0.
|
190 |
-
0.
|
191 |
-
0.
|
192 |
-
0.
|
193 |
-
0.
|
194 |
-
0.
|
195 |
-
0.
|
196 |
-
0.
|
197 |
-
0.
|
198 |
-
0.
|
199 |
-
0.
|
200 |
-
0.
|
201 |
-
0.
|
202 |
-
0.
|
203 |
-
0.
|
204 |
-
0.
|
205 |
-
0.
|
206 |
-
0.
|
207 |
-
0.
|
208 |
-
0.
|
209 |
-
0.
|
210 |
-
0.
|
211 |
-
0.
|
212 |
-
0.
|
213 |
-
0.
|
214 |
-
0.
|
215 |
-
0.
|
216 |
-
0.
|
217 |
-
0.
|
218 |
-
0.
|
219 |
-
0.
|
220 |
-
0.
|
221 |
-
0.
|
222 |
-
0.
|
223 |
-
0.
|
224 |
-
0.
|
225 |
-
0.
|
226 |
-
0.
|
227 |
-
0.
|
228 |
-
0.
|
229 |
-
0.
|
230 |
-
0.
|
231 |
-
0.
|
232 |
-
0.
|
233 |
-
0.
|
234 |
-
0.
|
235 |
-
0.
|
236 |
-
0.
|
237 |
-
0.
|
238 |
-
0.
|
239 |
-
0.
|
240 |
-
0.
|
241 |
-
0.
|
242 |
-
0.
|
243 |
-
0.
|
244 |
-
0.
|
245 |
-
0.
|
246 |
-
0.
|
247 |
-
0.
|
248 |
-
0.
|
249 |
-
0.
|
250 |
-
0.
|
251 |
-
0.
|
252 |
-
0.
|
253 |
-
0.
|
254 |
-
0.
|
255 |
-
0.
|
256 |
-
0.
|
257 |
-
0.
|
258 |
-
0.
|
259 |
-
0.
|
260 |
-
0.
|
261 |
-
0.
|
262 |
-
0.
|
263 |
-
0.
|
264 |
-
0.
|
265 |
-
0.
|
266 |
-
0.
|
267 |
-
0.
|
268 |
-
0.
|
269 |
-
0.
|
270 |
-
0.
|
271 |
-
0.
|
272 |
-
0.
|
273 |
-
0.
|
274 |
-
0.
|
275 |
-
0.
|
276 |
-
0.
|
277 |
-
0.
|
278 |
-
0.
|
279 |
-
0.
|
280 |
-
0.
|
281 |
-
0.
|
282 |
-
0.
|
283 |
-
0.
|
284 |
-
0.
|
285 |
-
0.
|
286 |
-
0.
|
287 |
-
0.
|
288 |
-
0.
|
289 |
-
0.
|
290 |
-
0.007012938976287842,
|
291 |
-
0.007008139133453369,
|
292 |
-
0.0070084590911865235,
|
293 |
-
0.006995820045471192,
|
294 |
-
0.007046539783477784,
|
295 |
-
0.007015339851379395,
|
296 |
-
0.00701373815536499
|
297 |
]
|
298 |
},
|
299 |
"throughput": {
|
300 |
"unit": "samples/s",
|
301 |
-
"value":
|
302 |
},
|
303 |
"energy": null,
|
304 |
"efficiency": null
|
|
|
3 |
"name": "cuda_inference_timm_image-classification_timm/resnet50.a1_in1k",
|
4 |
"backend": {
|
5 |
"name": "pytorch",
|
6 |
+
"version": "2.4.0+rocm6.1",
|
7 |
"_target_": "optimum_benchmark.backends.pytorch.backend.PyTorchBackend",
|
8 |
"task": "image-classification",
|
9 |
"library": "timm",
|
|
|
111 |
"load": {
|
112 |
"memory": {
|
113 |
"unit": "MB",
|
114 |
+
"max_ram": 1468.727296,
|
115 |
+
"max_global_vram": 11.124736,
|
116 |
+
"max_process_vram": 0.0,
|
117 |
"max_reserved": 123.731968,
|
118 |
"max_allocated": 102.475264
|
119 |
},
|
120 |
"latency": {
|
121 |
"unit": "s",
|
122 |
"count": 1,
|
123 |
+
"total": 8.10223974609375,
|
124 |
+
"mean": 8.10223974609375,
|
125 |
"stdev": 0.0,
|
126 |
+
"p50": 8.10223974609375,
|
127 |
+
"p90": 8.10223974609375,
|
128 |
+
"p95": 8.10223974609375,
|
129 |
+
"p99": 8.10223974609375,
|
130 |
"values": [
|
131 |
+
8.10223974609375
|
132 |
]
|
133 |
},
|
134 |
"throughput": null,
|
|
|
138 |
"forward": {
|
139 |
"memory": {
|
140 |
"unit": "MB",
|
141 |
+
"max_ram": 1555.369984,
|
142 |
+
"max_global_vram": 11.247616,
|
143 |
+
"max_process_vram": 0.0,
|
144 |
"max_reserved": 148.897792,
|
145 |
"max_allocated": 113.516032
|
146 |
},
|
147 |
"latency": {
|
148 |
"unit": "s",
|
149 |
+
"count": 132,
|
150 |
+
"total": 0.9976080794334413,
|
151 |
+
"mean": 0.007557636965404858,
|
152 |
+
"stdev": 0.00023275267480340494,
|
153 |
+
"p50": 0.007442369461059571,
|
154 |
+
"p90": 0.007921487808227538,
|
155 |
+
"p95": 0.008037527751922607,
|
156 |
+
"p99": 0.008446068305969237,
|
157 |
"values": [
|
158 |
+
0.008104126930236816,
|
159 |
+
0.0076146888732910156,
|
160 |
+
0.007617888927459716,
|
161 |
+
0.007707328796386719,
|
162 |
+
0.007670527935028077,
|
163 |
+
0.007601569175720215,
|
164 |
+
0.007588129043579101,
|
165 |
+
0.007561408996582032,
|
166 |
+
0.007537088871002197,
|
167 |
+
0.00751676893234253,
|
168 |
+
0.007514049053192138,
|
169 |
+
0.007483489990234375,
|
170 |
+
0.007482530117034912,
|
171 |
+
0.0074471688270568845,
|
172 |
+
0.007467649936676026,
|
173 |
+
0.007439488887786865,
|
174 |
+
0.007434689998626709,
|
175 |
+
0.007483008861541748,
|
176 |
+
0.007437088966369629,
|
177 |
+
0.007428289890289307,
|
178 |
+
0.007427168846130371,
|
179 |
+
0.00741772985458374,
|
180 |
+
0.007436288833618164,
|
181 |
+
0.007894527912139893,
|
182 |
+
0.007798848152160645,
|
183 |
+
0.007923327922821044,
|
184 |
+
0.008033568382263184,
|
185 |
+
0.007573410034179688,
|
186 |
+
0.007786688804626465,
|
187 |
+
0.00751324987411499,
|
188 |
+
0.007483008861541748,
|
189 |
+
0.007455968856811523,
|
190 |
+
0.007447649955749511,
|
191 |
+
0.0074190092086792,
|
192 |
+
0.008542844772338867,
|
193 |
+
0.00812796688079834,
|
194 |
+
0.00793692684173584,
|
195 |
+
0.007709249019622803,
|
196 |
+
0.0082220458984375,
|
197 |
+
0.007975487232208252,
|
198 |
+
0.00785756778717041,
|
199 |
+
0.007981246948242187,
|
200 |
+
0.007826047897338867,
|
201 |
+
0.007880127906799317,
|
202 |
+
0.007904926776885986,
|
203 |
+
0.0079268479347229,
|
204 |
+
0.007946527004241944,
|
205 |
+
0.007630848884582519,
|
206 |
+
0.0076642889976501465,
|
207 |
+
0.00758220911026001,
|
208 |
+
0.00763132905960083,
|
209 |
+
0.00767388916015625,
|
210 |
+
0.007559968948364258,
|
211 |
+
0.007392448902130127,
|
212 |
+
0.007432129859924317,
|
213 |
+
0.007422369003295898,
|
214 |
+
0.007428609848022461,
|
215 |
+
0.00743596887588501,
|
216 |
+
0.0076297287940979,
|
217 |
+
0.00738716983795166,
|
218 |
+
0.007594688892364502,
|
219 |
+
0.007647489070892334,
|
220 |
+
0.007400929927825928,
|
221 |
+
0.00748668909072876,
|
222 |
+
0.007417409896850586,
|
223 |
+
0.007432289123535156,
|
224 |
+
0.007460130214691162,
|
225 |
+
0.007467169761657715,
|
226 |
+
0.007449728965759277,
|
227 |
+
0.00742588996887207,
|
228 |
+
0.007430368900299072,
|
229 |
+
0.00741068983078003,
|
230 |
+
0.007439009189605713,
|
231 |
+
0.0074348502159118654,
|
232 |
+
0.007417408943176269,
|
233 |
+
0.007397729873657227,
|
234 |
+
0.007600449085235596,
|
235 |
+
0.007444929122924804,
|
236 |
+
0.007456610202789307,
|
237 |
+
0.00743212890625,
|
238 |
+
0.007443490028381347,
|
239 |
+
0.007441888809204102,
|
240 |
+
0.00745644998550415,
|
241 |
+
0.0074298901557922365,
|
242 |
+
0.007434209823608398,
|
243 |
+
0.007424930095672608,
|
244 |
+
0.007430210113525391,
|
245 |
+
0.007430369853973389,
|
246 |
+
0.007436930179595947,
|
247 |
+
0.007413730144500732,
|
248 |
+
0.007442369937896729,
|
249 |
+
0.007414370059967041,
|
250 |
+
0.007414690017700195,
|
251 |
+
0.0074110088348388675,
|
252 |
+
0.007418049812316895,
|
253 |
+
0.007439329147338867,
|
254 |
+
0.007434050083160401,
|
255 |
+
0.007416928768157959,
|
256 |
+
0.007382369995117187,
|
257 |
+
0.007417570114135743,
|
258 |
+
0.00742204999923706,
|
259 |
+
0.007438529968261718,
|
260 |
+
0.00741117000579834,
|
261 |
+
0.007411330223083496,
|
262 |
+
0.0074343690872192385,
|
263 |
+
0.007399010181427002,
|
264 |
+
0.007421568870544433,
|
265 |
+
0.007418369770050049,
|
266 |
+
0.007442368984222412,
|
267 |
+
0.007413569927215576,
|
268 |
+
0.007402689933776856,
|
269 |
+
0.007419489860534668,
|
270 |
+
0.007430369853973389,
|
271 |
+
0.007431808948516846,
|
272 |
+
0.007431169986724853,
|
273 |
+
0.007415009021759033,
|
274 |
+
0.007432129859924317,
|
275 |
+
0.007408449172973633,
|
276 |
+
0.007471010208129882,
|
277 |
+
0.00745884895324707,
|
278 |
+
0.0074631690979003905,
|
279 |
+
0.007421889781951904,
|
280 |
+
0.007425249099731445,
|
281 |
+
0.007434209823608398,
|
282 |
+
0.0074138898849487305,
|
283 |
+
0.007436288833618164,
|
284 |
+
0.0074631690979003905,
|
285 |
+
0.007416450023651123,
|
286 |
+
0.007450688838958741,
|
287 |
+
0.008446366310119628,
|
288 |
+
0.00844540500640869,
|
289 |
+
0.008042366981506347
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
290 |
]
|
291 |
},
|
292 |
"throughput": {
|
293 |
"unit": "samples/s",
|
294 |
+
"value": 132.31649053500556
|
295 |
},
|
296 |
"energy": null,
|
297 |
"efficiency": null
|