Upload cuda_training_transformers_fill-mask_google-bert/bert-base-uncased/benchmark.json with huggingface_hub
Browse files
cuda_training_transformers_fill-mask_google-bert/bert-base-uncased/benchmark.json
CHANGED
@@ -3,7 +3,7 @@
|
|
3 |
"name": "cuda_training_transformers_fill-mask_google-bert/bert-base-uncased",
|
4 |
"backend": {
|
5 |
"name": "pytorch",
|
6 |
-
"version": "2.
|
7 |
"_target_": "optimum_benchmark.backends.pytorch.backend.PyTorchBackend",
|
8 |
"task": "fill-mask",
|
9 |
"library": "transformers",
|
@@ -11,7 +11,7 @@
|
|
11 |
"model": "google-bert/bert-base-uncased",
|
12 |
"processor": "google-bert/bert-base-uncased",
|
13 |
"device": "cuda",
|
14 |
-
"device_ids": "
|
15 |
"seed": 42,
|
16 |
"inter_op_num_threads": null,
|
17 |
"intra_op_num_threads": null,
|
@@ -117,33 +117,33 @@
|
|
117 |
"overall": {
|
118 |
"memory": {
|
119 |
"unit": "MB",
|
120 |
-
"max_ram":
|
121 |
-
"max_global_vram":
|
122 |
-
"max_process_vram":
|
123 |
"max_reserved": 2497.708032,
|
124 |
"max_allocated": 2195.345408
|
125 |
},
|
126 |
"latency": {
|
127 |
"unit": "s",
|
128 |
"count": 5,
|
129 |
-
"total": 0.
|
130 |
-
"mean": 0.
|
131 |
-
"stdev": 0.
|
132 |
-
"p50": 0.
|
133 |
-
"p90": 0.
|
134 |
-
"p95": 0.
|
135 |
-
"p99": 0.
|
136 |
"values": [
|
137 |
-
0.
|
138 |
-
0.
|
139 |
-
0.
|
140 |
-
0.
|
141 |
-
0.
|
142 |
]
|
143 |
},
|
144 |
"throughput": {
|
145 |
"unit": "samples/s",
|
146 |
-
"value":
|
147 |
},
|
148 |
"energy": null,
|
149 |
"efficiency": null
|
@@ -151,30 +151,30 @@
|
|
151 |
"warmup": {
|
152 |
"memory": {
|
153 |
"unit": "MB",
|
154 |
-
"max_ram":
|
155 |
-
"max_global_vram":
|
156 |
-
"max_process_vram":
|
157 |
"max_reserved": 2497.708032,
|
158 |
"max_allocated": 2195.345408
|
159 |
},
|
160 |
"latency": {
|
161 |
"unit": "s",
|
162 |
"count": 2,
|
163 |
-
"total": 0.
|
164 |
-
"mean": 0.
|
165 |
-
"stdev": 0.
|
166 |
-
"p50": 0.
|
167 |
-
"p90": 0.
|
168 |
-
"p95": 0.
|
169 |
-
"p99": 0.
|
170 |
"values": [
|
171 |
-
0.
|
172 |
-
0.
|
173 |
]
|
174 |
},
|
175 |
"throughput": {
|
176 |
"unit": "samples/s",
|
177 |
-
"value":
|
178 |
},
|
179 |
"energy": null,
|
180 |
"efficiency": null
|
@@ -182,31 +182,31 @@
|
|
182 |
"train": {
|
183 |
"memory": {
|
184 |
"unit": "MB",
|
185 |
-
"max_ram":
|
186 |
-
"max_global_vram":
|
187 |
-
"max_process_vram":
|
188 |
"max_reserved": 2497.708032,
|
189 |
"max_allocated": 2195.345408
|
190 |
},
|
191 |
"latency": {
|
192 |
"unit": "s",
|
193 |
"count": 3,
|
194 |
-
"total": 0.
|
195 |
-
"mean": 0.
|
196 |
-
"stdev": 0.
|
197 |
-
"p50": 0.
|
198 |
-
"p90": 0.
|
199 |
-
"p95": 0.
|
200 |
-
"p99": 0.
|
201 |
"values": [
|
202 |
-
0.
|
203 |
-
0.
|
204 |
-
0.
|
205 |
]
|
206 |
},
|
207 |
"throughput": {
|
208 |
"unit": "samples/s",
|
209 |
-
"value":
|
210 |
},
|
211 |
"energy": null,
|
212 |
"efficiency": null
|
|
|
3 |
"name": "cuda_training_transformers_fill-mask_google-bert/bert-base-uncased",
|
4 |
"backend": {
|
5 |
"name": "pytorch",
|
6 |
+
"version": "2.3.1+rocm5.7",
|
7 |
"_target_": "optimum_benchmark.backends.pytorch.backend.PyTorchBackend",
|
8 |
"task": "fill-mask",
|
9 |
"library": "transformers",
|
|
|
11 |
"model": "google-bert/bert-base-uncased",
|
12 |
"processor": "google-bert/bert-base-uncased",
|
13 |
"device": "cuda",
|
14 |
+
"device_ids": "4",
|
15 |
"seed": 42,
|
16 |
"inter_op_num_threads": null,
|
17 |
"intra_op_num_threads": null,
|
|
|
117 |
"overall": {
|
118 |
"memory": {
|
119 |
"unit": "MB",
|
120 |
+
"max_ram": 1271.5008,
|
121 |
+
"max_global_vram": 2958.061568,
|
122 |
+
"max_process_vram": 300161.98656,
|
123 |
"max_reserved": 2497.708032,
|
124 |
"max_allocated": 2195.345408
|
125 |
},
|
126 |
"latency": {
|
127 |
"unit": "s",
|
128 |
"count": 5,
|
129 |
+
"total": 0.7368733367919923,
|
130 |
+
"mean": 0.14737466735839846,
|
131 |
+
"stdev": 0.21022850913148108,
|
132 |
+
"p50": 0.042222904205322265,
|
133 |
+
"p90": 0.35788311767578135,
|
134 |
+
"p95": 0.46285705566406243,
|
135 |
+
"p99": 0.5468362060546875,
|
136 |
"values": [
|
137 |
+
0.5678309936523438,
|
138 |
+
0.0429613037109375,
|
139 |
+
0.04184210968017578,
|
140 |
+
0.04201602554321289,
|
141 |
+
0.042222904205322265
|
142 |
]
|
143 |
},
|
144 |
"throughput": {
|
145 |
"unit": "samples/s",
|
146 |
+
"value": 67.85426681019158
|
147 |
},
|
148 |
"energy": null,
|
149 |
"efficiency": null
|
|
|
151 |
"warmup": {
|
152 |
"memory": {
|
153 |
"unit": "MB",
|
154 |
+
"max_ram": 1271.5008,
|
155 |
+
"max_global_vram": 2958.061568,
|
156 |
+
"max_process_vram": 300161.98656,
|
157 |
"max_reserved": 2497.708032,
|
158 |
"max_allocated": 2195.345408
|
159 |
},
|
160 |
"latency": {
|
161 |
"unit": "s",
|
162 |
"count": 2,
|
163 |
+
"total": 0.6107922973632813,
|
164 |
+
"mean": 0.30539614868164067,
|
165 |
+
"stdev": 0.2624348449707032,
|
166 |
+
"p50": 0.30539614868164067,
|
167 |
+
"p90": 0.5153440246582032,
|
168 |
+
"p95": 0.5415875091552734,
|
169 |
+
"p99": 0.5625822967529297,
|
170 |
"values": [
|
171 |
+
0.5678309936523438,
|
172 |
+
0.0429613037109375
|
173 |
]
|
174 |
},
|
175 |
"throughput": {
|
176 |
"unit": "samples/s",
|
177 |
+
"value": 13.097742120414846
|
178 |
},
|
179 |
"energy": null,
|
180 |
"efficiency": null
|
|
|
182 |
"train": {
|
183 |
"memory": {
|
184 |
"unit": "MB",
|
185 |
+
"max_ram": 1271.5008,
|
186 |
+
"max_global_vram": 2958.061568,
|
187 |
+
"max_process_vram": 300161.98656,
|
188 |
"max_reserved": 2497.708032,
|
189 |
"max_allocated": 2195.345408
|
190 |
},
|
191 |
"latency": {
|
192 |
"unit": "s",
|
193 |
"count": 3,
|
194 |
+
"total": 0.12608103942871093,
|
195 |
+
"mean": 0.04202701314290364,
|
196 |
+
"stdev": 0.00015565273978873092,
|
197 |
+
"p50": 0.04201602554321289,
|
198 |
+
"p90": 0.04218152847290039,
|
199 |
+
"p95": 0.04220221633911133,
|
200 |
+
"p99": 0.04221876663208008,
|
201 |
"values": [
|
202 |
+
0.04184210968017578,
|
203 |
+
0.04201602554321289,
|
204 |
+
0.042222904205322265
|
205 |
]
|
206 |
},
|
207 |
"throughput": {
|
208 |
"unit": "samples/s",
|
209 |
+
"value": 142.76532047610226
|
210 |
},
|
211 |
"energy": null,
|
212 |
"efficiency": null
|