Upload cuda_inference_transformers_image-classification_google/vit-base-patch16-224/benchmark.json with huggingface_hub
Browse files
cuda_inference_transformers_image-classification_google/vit-base-patch16-224/benchmark.json
CHANGED
@@ -3,7 +3,7 @@
|
|
3 |
"name": "cuda_inference_transformers_image-classification_google/vit-base-patch16-224",
|
4 |
"backend": {
|
5 |
"name": "pytorch",
|
6 |
-
"version": "2.
|
7 |
"_target_": "optimum_benchmark.backends.pytorch.backend.PyTorchBackend",
|
8 |
"task": "image-classification",
|
9 |
"library": "transformers",
|
@@ -11,7 +11,7 @@
|
|
11 |
"model": "google/vit-base-patch16-224",
|
12 |
"processor": "google/vit-base-patch16-224",
|
13 |
"device": "cuda",
|
14 |
-
"device_ids": "
|
15 |
"seed": 42,
|
16 |
"inter_op_num_threads": null,
|
17 |
"intra_op_num_threads": null,
|
@@ -111,24 +111,24 @@
|
|
111 |
"load": {
|
112 |
"memory": {
|
113 |
"unit": "MB",
|
114 |
-
"max_ram":
|
115 |
"max_global_vram": 68702.69952,
|
116 |
-
"max_process_vram":
|
117 |
"max_reserved": 400.556032,
|
118 |
"max_allocated": 346.271744
|
119 |
},
|
120 |
"latency": {
|
121 |
"unit": "s",
|
122 |
"count": 1,
|
123 |
-
"total": 8.
|
124 |
-
"mean": 8.
|
125 |
"stdev": 0.0,
|
126 |
-
"p50": 8.
|
127 |
-
"p90": 8.
|
128 |
-
"p95": 8.
|
129 |
-
"p99": 8.
|
130 |
"values": [
|
131 |
-
8.
|
132 |
]
|
133 |
},
|
134 |
"throughput": null,
|
@@ -138,191 +138,190 @@
|
|
138 |
"forward": {
|
139 |
"memory": {
|
140 |
"unit": "MB",
|
141 |
-
"max_ram":
|
142 |
"max_global_vram": 68702.69952,
|
143 |
-
"max_process_vram":
|
144 |
"max_reserved": 406.847488,
|
145 |
"max_allocated": 355.303424
|
146 |
},
|
147 |
"latency": {
|
148 |
"unit": "s",
|
149 |
-
"count":
|
150 |
-
"total": 0.
|
151 |
-
"mean": 0.
|
152 |
-
"stdev": 0.
|
153 |
-
"p50": 0.
|
154 |
-
"p90": 0.
|
155 |
-
"p95": 0.
|
156 |
-
"p99": 0.
|
157 |
"values": [
|
158 |
-
0.
|
159 |
-
0.
|
160 |
-
0.
|
161 |
-
0.
|
162 |
-
0.
|
163 |
-
0.
|
164 |
-
0.
|
165 |
-
0.
|
166 |
-
0.
|
167 |
-
0.
|
168 |
-
0.
|
169 |
-
0.
|
170 |
-
0.
|
171 |
-
0.
|
172 |
-
0.
|
173 |
-
0.
|
174 |
-
0.
|
175 |
-
0.
|
176 |
-
0.
|
177 |
-
0.
|
178 |
-
0.
|
179 |
-
0.
|
180 |
-
0.
|
181 |
-
0.
|
182 |
-
0.
|
183 |
-
0.
|
184 |
-
0.
|
185 |
-
0.
|
186 |
-
0.
|
187 |
-
0.
|
188 |
-
0.
|
189 |
-
0.
|
190 |
-
0.
|
191 |
-
0.
|
192 |
-
0.
|
193 |
-
0.
|
194 |
-
0.
|
195 |
-
0.
|
196 |
-
0.
|
197 |
-
0.
|
198 |
-
0.
|
199 |
-
0.
|
200 |
-
0.
|
201 |
-
0.
|
202 |
-
0.
|
203 |
-
0.
|
204 |
-
0.
|
205 |
-
0.
|
206 |
-
0.
|
207 |
-
0.
|
208 |
-
0.
|
209 |
-
0.
|
210 |
-
0.
|
211 |
-
0.
|
212 |
-
0.
|
213 |
-
0.
|
214 |
-
0.
|
215 |
-
0.
|
216 |
-
0.
|
217 |
-
0.
|
218 |
-
0.
|
219 |
-
0.
|
220 |
-
0.
|
221 |
-
0.
|
222 |
-
0.
|
223 |
-
0.
|
224 |
-
0.
|
225 |
-
0.
|
226 |
-
0.
|
227 |
-
0.
|
228 |
-
0.
|
229 |
-
0.
|
230 |
-
0.
|
231 |
-
0.
|
232 |
-
0.
|
233 |
-
0.
|
234 |
-
0.
|
235 |
-
0.
|
236 |
-
0.
|
237 |
-
0.
|
238 |
-
0.
|
239 |
-
0.
|
240 |
-
0.
|
241 |
-
0.
|
242 |
-
0.
|
243 |
-
0.
|
244 |
-
0.
|
245 |
-
0.
|
246 |
-
0.
|
247 |
-
0.
|
248 |
-
0.
|
249 |
-
0.
|
250 |
-
0.
|
251 |
-
0.
|
252 |
-
0.
|
253 |
-
0.
|
254 |
-
0.
|
255 |
-
0.
|
256 |
-
0.
|
257 |
-
0.
|
258 |
-
0.
|
259 |
-
0.
|
260 |
-
0.
|
261 |
-
0.
|
262 |
-
0.
|
263 |
-
0.
|
264 |
-
0.
|
265 |
-
0.
|
266 |
-
0.
|
267 |
-
0.
|
268 |
-
0.
|
269 |
-
0.
|
270 |
-
0.
|
271 |
-
0.
|
272 |
-
0.
|
273 |
-
0.
|
274 |
-
0.
|
275 |
-
0.
|
276 |
-
0.
|
277 |
-
0.
|
278 |
-
0.
|
279 |
-
0.
|
280 |
-
0.
|
281 |
-
0.
|
282 |
-
0.
|
283 |
-
0.
|
284 |
-
0.
|
285 |
-
0.
|
286 |
-
0.
|
287 |
-
0.
|
288 |
-
0.
|
289 |
-
0.
|
290 |
-
0.
|
291 |
-
0.
|
292 |
-
0.
|
293 |
-
0.
|
294 |
-
0.
|
295 |
-
0.
|
296 |
-
0.
|
297 |
-
0.
|
298 |
-
0.
|
299 |
-
0.
|
300 |
-
0.
|
301 |
-
0.
|
302 |
-
0.
|
303 |
-
0.
|
304 |
-
0.
|
305 |
-
0.
|
306 |
-
0.
|
307 |
-
0.
|
308 |
-
0.
|
309 |
-
0.
|
310 |
-
0.
|
311 |
-
0.
|
312 |
-
0.
|
313 |
-
0.
|
314 |
-
0.
|
315 |
-
0.
|
316 |
-
0.
|
317 |
-
0.
|
318 |
-
0.
|
319 |
-
0.
|
320 |
-
0.005900457859039306
|
321 |
]
|
322 |
},
|
323 |
"throughput": {
|
324 |
"unit": "samples/s",
|
325 |
-
"value":
|
326 |
},
|
327 |
"energy": null,
|
328 |
"efficiency": null
|
|
|
3 |
"name": "cuda_inference_transformers_image-classification_google/vit-base-patch16-224",
|
4 |
"backend": {
|
5 |
"name": "pytorch",
|
6 |
+
"version": "2.2.0.dev20231010+rocm5.7",
|
7 |
"_target_": "optimum_benchmark.backends.pytorch.backend.PyTorchBackend",
|
8 |
"task": "image-classification",
|
9 |
"library": "transformers",
|
|
|
11 |
"model": "google/vit-base-patch16-224",
|
12 |
"processor": "google/vit-base-patch16-224",
|
13 |
"device": "cuda",
|
14 |
+
"device_ids": "6",
|
15 |
"seed": 42,
|
16 |
"inter_op_num_threads": null,
|
17 |
"intra_op_num_threads": null,
|
|
|
111 |
"load": {
|
112 |
"memory": {
|
113 |
"unit": "MB",
|
114 |
+
"max_ram": 947.253248,
|
115 |
"max_global_vram": 68702.69952,
|
116 |
+
"max_process_vram": 45910.536192,
|
117 |
"max_reserved": 400.556032,
|
118 |
"max_allocated": 346.271744
|
119 |
},
|
120 |
"latency": {
|
121 |
"unit": "s",
|
122 |
"count": 1,
|
123 |
+
"total": 8.03431005859375,
|
124 |
+
"mean": 8.03431005859375,
|
125 |
"stdev": 0.0,
|
126 |
+
"p50": 8.03431005859375,
|
127 |
+
"p90": 8.03431005859375,
|
128 |
+
"p95": 8.03431005859375,
|
129 |
+
"p99": 8.03431005859375,
|
130 |
"values": [
|
131 |
+
8.03431005859375
|
132 |
]
|
133 |
},
|
134 |
"throughput": null,
|
|
|
138 |
"forward": {
|
139 |
"memory": {
|
140 |
"unit": "MB",
|
141 |
+
"max_ram": 1119.326208,
|
142 |
"max_global_vram": 68702.69952,
|
143 |
+
"max_process_vram": 178943.561728,
|
144 |
"max_reserved": 406.847488,
|
145 |
"max_allocated": 355.303424
|
146 |
},
|
147 |
"latency": {
|
148 |
"unit": "s",
|
149 |
+
"count": 162,
|
150 |
+
"total": 0.997132691383362,
|
151 |
+
"mean": 0.006155140070267665,
|
152 |
+
"stdev": 0.00031447925029985414,
|
153 |
+
"p50": 0.00598904800415039,
|
154 |
+
"p90": 0.006611928796768188,
|
155 |
+
"p95": 0.006633265066146851,
|
156 |
+
"p99": 0.0067156409454345685,
|
157 |
"values": [
|
158 |
+
0.0063369679450988765,
|
159 |
+
0.006231688976287842,
|
160 |
+
0.0061521677970886235,
|
161 |
+
0.006261288166046142,
|
162 |
+
0.006341448783874512,
|
163 |
+
0.006278088092803955,
|
164 |
+
0.00631264877319336,
|
165 |
+
0.006290408134460449,
|
166 |
+
0.006295369148254394,
|
167 |
+
0.006232168197631836,
|
168 |
+
0.006191688060760498,
|
169 |
+
0.006133448123931884,
|
170 |
+
0.006166247844696045,
|
171 |
+
0.006129928112030029,
|
172 |
+
0.006074567794799804,
|
173 |
+
0.0060923280715942385,
|
174 |
+
0.006039527893066407,
|
175 |
+
0.006034088134765625,
|
176 |
+
0.006002088069915771,
|
177 |
+
0.006033449172973633,
|
178 |
+
0.005986887931823731,
|
179 |
+
0.005998568058013916,
|
180 |
+
0.0059761681556701664,
|
181 |
+
0.0059926481246948245,
|
182 |
+
0.0060000081062316895,
|
183 |
+
0.006048488140106201,
|
184 |
+
0.006002088069915771,
|
185 |
+
0.005991208076477051,
|
186 |
+
0.0059432082176208495,
|
187 |
+
0.006005928039550781,
|
188 |
+
0.005976967811584473,
|
189 |
+
0.00597264814376831,
|
190 |
+
0.005950088024139404,
|
191 |
+
0.005966567993164062,
|
192 |
+
0.007174569129943848,
|
193 |
+
0.006127528190612793,
|
194 |
+
0.005911686897277832,
|
195 |
+
0.005898727893829346,
|
196 |
+
0.005881927967071533,
|
197 |
+
0.00587664794921875,
|
198 |
+
0.0058628878593444825,
|
199 |
+
0.005886407852172851,
|
200 |
+
0.005920968055725098,
|
201 |
+
0.005889448165893554,
|
202 |
+
0.005888967990875244,
|
203 |
+
0.005896487236022949,
|
204 |
+
0.005914728164672852,
|
205 |
+
0.0059075279235839846,
|
206 |
+
0.005885767936706543,
|
207 |
+
0.005888487815856934,
|
208 |
+
0.005910247802734375,
|
209 |
+
0.005918248176574707,
|
210 |
+
0.005937928199768066,
|
211 |
+
0.00591920804977417,
|
212 |
+
0.005953127861022949,
|
213 |
+
0.005939208030700684,
|
214 |
+
0.0059220871925354,
|
215 |
+
0.005921926975250244,
|
216 |
+
0.00612976884841919,
|
217 |
+
0.00656112813949585,
|
218 |
+
0.006629768848419189,
|
219 |
+
0.006529288768768311,
|
220 |
+
0.006614889144897461,
|
221 |
+
0.006644329071044922,
|
222 |
+
0.00659584903717041,
|
223 |
+
0.006614247798919678,
|
224 |
+
0.006639049053192138,
|
225 |
+
0.006648969173431396,
|
226 |
+
0.00661776876449585,
|
227 |
+
0.006622408866882324,
|
228 |
+
0.006657608985900879,
|
229 |
+
0.006552329063415527,
|
230 |
+
0.006172647953033447,
|
231 |
+
0.006159687995910644,
|
232 |
+
0.006199048042297363,
|
233 |
+
0.0059131278991699215,
|
234 |
+
0.006149289131164551,
|
235 |
+
0.005901766777038574,
|
236 |
+
0.005916647911071778,
|
237 |
+
0.005894887924194336,
|
238 |
+
0.005917128086090088,
|
239 |
+
0.005908008098602295,
|
240 |
+
0.005888008117675782,
|
241 |
+
0.0059032077789306645,
|
242 |
+
0.00588480806350708,
|
243 |
+
0.005889448165893554,
|
244 |
+
0.005891366958618164,
|
245 |
+
0.005871047973632812,
|
246 |
+
0.005904327869415283,
|
247 |
+
0.005868328094482422,
|
248 |
+
0.005882408142089844,
|
249 |
+
0.005885767936706543,
|
250 |
+
0.0059008078575134276,
|
251 |
+
0.005879208087921143,
|
252 |
+
0.005913287162780762,
|
253 |
+
0.00590880823135376,
|
254 |
+
0.005896008014678955,
|
255 |
+
0.005869287967681885,
|
256 |
+
0.005876808166503906,
|
257 |
+
0.005867527961730957,
|
258 |
+
0.005880008220672608,
|
259 |
+
0.005876008033752441,
|
260 |
+
0.005866726875305176,
|
261 |
+
0.005847847938537597,
|
262 |
+
0.005893767833709717,
|
263 |
+
0.0059001679420471196,
|
264 |
+
0.0058838481903076174,
|
265 |
+
0.005903687953948975,
|
266 |
+
0.005888967990875244,
|
267 |
+
0.0058795280456542965,
|
268 |
+
0.005864167213439941,
|
269 |
+
0.005868008136749267,
|
270 |
+
0.005849448204040528,
|
271 |
+
0.005875527858734131,
|
272 |
+
0.005871047973632812,
|
273 |
+
0.005865128040313721,
|
274 |
+
0.005871367931365967,
|
275 |
+
0.005885127067565918,
|
276 |
+
0.005860328197479248,
|
277 |
+
0.005887368202209473,
|
278 |
+
0.0058630480766296384,
|
279 |
+
0.005895847797393799,
|
280 |
+
0.005863687992095947,
|
281 |
+
0.005852807998657226,
|
282 |
+
0.005878087043762207,
|
283 |
+
0.005878407955169678,
|
284 |
+
0.005876808166503906,
|
285 |
+
0.005882408142089844,
|
286 |
+
0.006233767986297607,
|
287 |
+
0.006612168788909912,
|
288 |
+
0.006604969024658203,
|
289 |
+
0.006640328884124756,
|
290 |
+
0.0066334490776062014,
|
291 |
+
0.006639369010925293,
|
292 |
+
0.0068064088821411135,
|
293 |
+
0.006617128849029541,
|
294 |
+
0.006540808200836181,
|
295 |
+
0.006555849075317382,
|
296 |
+
0.006524168968200684,
|
297 |
+
0.0065502490997314455,
|
298 |
+
0.00660640811920166,
|
299 |
+
0.006553927898406983,
|
300 |
+
0.00654512882232666,
|
301 |
+
0.006576649188995361,
|
302 |
+
0.006537929058074952,
|
303 |
+
0.006575528144836426,
|
304 |
+
0.006606409072875977,
|
305 |
+
0.006592648983001709,
|
306 |
+
0.006566888809204101,
|
307 |
+
0.006596649169921875,
|
308 |
+
0.0065571279525756835,
|
309 |
+
0.006609768867492676,
|
310 |
+
0.006606089115142822,
|
311 |
+
0.006627849102020264,
|
312 |
+
0.0066003289222717285,
|
313 |
+
0.006592809200286865,
|
314 |
+
0.006553607940673828,
|
315 |
+
0.006592809200286865,
|
316 |
+
0.006592488765716552,
|
317 |
+
0.0065675277709960934,
|
318 |
+
0.0065721688270568845,
|
319 |
+
0.006588168144226074
|
|
|
320 |
]
|
321 |
},
|
322 |
"throughput": {
|
323 |
"unit": "samples/s",
|
324 |
+
"value": 162.46583970208718
|
325 |
},
|
326 |
"energy": null,
|
327 |
"efficiency": null
|