Upload cuda_inference_transformers_image-classification_google/vit-base-patch16-224/benchmark.json with huggingface_hub
Browse files
cuda_inference_transformers_image-classification_google/vit-base-patch16-224/benchmark.json
CHANGED
@@ -3,7 +3,7 @@
|
|
3 |
"name": "cuda_inference_transformers_image-classification_google/vit-base-patch16-224",
|
4 |
"backend": {
|
5 |
"name": "pytorch",
|
6 |
-
"version": "2.
|
7 |
"_target_": "optimum_benchmark.backends.pytorch.backend.PyTorchBackend",
|
8 |
"task": "image-classification",
|
9 |
"library": "transformers",
|
@@ -11,7 +11,7 @@
|
|
11 |
"model": "google/vit-base-patch16-224",
|
12 |
"processor": "google/vit-base-patch16-224",
|
13 |
"device": "cuda",
|
14 |
-
"device_ids": "
|
15 |
"seed": 42,
|
16 |
"inter_op_num_threads": null,
|
17 |
"intra_op_num_threads": null,
|
@@ -111,24 +111,24 @@
|
|
111 |
"load": {
|
112 |
"memory": {
|
113 |
"unit": "MB",
|
114 |
-
"max_ram":
|
115 |
"max_global_vram": 68702.69952,
|
116 |
-
"max_process_vram":
|
117 |
"max_reserved": 400.556032,
|
118 |
"max_allocated": 346.271744
|
119 |
},
|
120 |
"latency": {
|
121 |
"unit": "s",
|
122 |
"count": 1,
|
123 |
-
"total":
|
124 |
-
"mean":
|
125 |
"stdev": 0.0,
|
126 |
-
"p50":
|
127 |
-
"p90":
|
128 |
-
"p95":
|
129 |
-
"p99":
|
130 |
"values": [
|
131 |
-
|
132 |
]
|
133 |
},
|
134 |
"throughput": null,
|
@@ -138,191 +138,202 @@
|
|
138 |
"forward": {
|
139 |
"memory": {
|
140 |
"unit": "MB",
|
141 |
-
"max_ram":
|
142 |
"max_global_vram": 68702.69952,
|
143 |
-
"max_process_vram":
|
144 |
"max_reserved": 406.847488,
|
145 |
-
"max_allocated":
|
146 |
},
|
147 |
"latency": {
|
148 |
"unit": "s",
|
149 |
-
"count":
|
150 |
-
"total": 0.
|
151 |
-
"mean": 0.
|
152 |
-
"stdev": 0.
|
153 |
-
"p50": 0.
|
154 |
-
"p90": 0.
|
155 |
-
"p95": 0.
|
156 |
-
"p99": 0.
|
157 |
"values": [
|
158 |
-
0.
|
159 |
-
0.
|
160 |
-
0.
|
161 |
-
0.
|
162 |
-
0.
|
163 |
-
0.
|
164 |
-
0.
|
165 |
-
0.
|
166 |
-
0.
|
167 |
-
0.
|
168 |
-
0.
|
169 |
-
0.
|
170 |
-
0.
|
171 |
-
0.
|
172 |
-
0.
|
173 |
-
0.
|
174 |
-
0.
|
175 |
-
0.
|
176 |
-
0.
|
177 |
-
0.
|
178 |
-
0.
|
179 |
-
0.
|
180 |
-
0.
|
181 |
-
0.
|
182 |
-
0.
|
183 |
-
0.
|
184 |
-
0.
|
185 |
-
0.
|
186 |
-
0.
|
187 |
-
0.
|
188 |
-
0.
|
189 |
-
0.
|
190 |
-
0.
|
191 |
-
0.
|
192 |
-
0.
|
193 |
-
0.
|
194 |
-
0.
|
195 |
-
0.
|
196 |
-
0.
|
197 |
-
0.
|
198 |
-
0.
|
199 |
-
0.
|
200 |
-
0.
|
201 |
-
0.
|
202 |
-
0.
|
203 |
-
0.
|
204 |
-
0.
|
205 |
-
0.
|
206 |
-
0.
|
207 |
-
0.
|
208 |
-
0.
|
209 |
-
0.
|
210 |
-
0.
|
211 |
-
0.
|
212 |
-
0.
|
213 |
-
0.
|
214 |
-
0.
|
215 |
-
0.
|
216 |
-
0.
|
217 |
-
0.
|
218 |
-
0.
|
219 |
-
0.
|
220 |
-
0.
|
221 |
-
0.
|
222 |
-
0.
|
223 |
-
0.
|
224 |
-
0.
|
225 |
-
0.
|
226 |
-
0.
|
227 |
-
0.
|
228 |
-
0.
|
229 |
-
0.
|
230 |
-
0.
|
231 |
-
0.
|
232 |
-
0.
|
233 |
-
0.
|
234 |
-
0.
|
235 |
-
0.
|
236 |
-
0.
|
237 |
-
0.
|
238 |
-
0.
|
239 |
-
0.
|
240 |
-
0.
|
241 |
-
0.
|
242 |
-
0.
|
243 |
-
0.
|
244 |
-
0.
|
245 |
-
0.
|
246 |
-
0.
|
247 |
-
0.
|
248 |
-
0.
|
249 |
-
0.
|
250 |
-
0.
|
251 |
-
0.
|
252 |
-
0.
|
253 |
-
0.
|
254 |
-
0.
|
255 |
-
0.
|
256 |
-
0.
|
257 |
-
0.
|
258 |
-
0.
|
259 |
-
0.
|
260 |
-
0.
|
261 |
-
0.
|
262 |
-
0.
|
263 |
-
0.
|
264 |
-
0.
|
265 |
-
0.
|
266 |
-
0.
|
267 |
-
0.
|
268 |
-
0.
|
269 |
-
0.
|
270 |
-
0.
|
271 |
-
0.
|
272 |
-
0.
|
273 |
-
0.
|
274 |
-
0.
|
275 |
-
0.
|
276 |
-
0.
|
277 |
-
0.
|
278 |
-
0.
|
279 |
-
0.
|
280 |
-
0.
|
281 |
-
0.
|
282 |
-
0.
|
283 |
-
0.
|
284 |
-
0.
|
285 |
-
0.
|
286 |
-
0.
|
287 |
-
0.
|
288 |
-
0.
|
289 |
-
0.
|
290 |
-
0.
|
291 |
-
0.
|
292 |
-
0.
|
293 |
-
0.
|
294 |
-
0.
|
295 |
-
0.
|
296 |
-
0.
|
297 |
-
0.
|
298 |
-
0.
|
299 |
-
0.
|
300 |
-
0.
|
301 |
-
0.
|
302 |
-
0.
|
303 |
-
0.
|
304 |
-
0.
|
305 |
-
0.
|
306 |
-
0.
|
307 |
-
0.
|
308 |
-
0.
|
309 |
-
0.
|
310 |
-
0.
|
311 |
-
0.
|
312 |
-
0.
|
313 |
-
0.
|
314 |
-
0.
|
315 |
-
0.
|
316 |
-
0.
|
317 |
-
0.
|
318 |
-
0.
|
319 |
-
0.
|
320 |
-
0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
321 |
]
|
322 |
},
|
323 |
"throughput": {
|
324 |
"unit": "samples/s",
|
325 |
-
"value":
|
326 |
},
|
327 |
"energy": null,
|
328 |
"efficiency": null
|
|
|
3 |
"name": "cuda_inference_transformers_image-classification_google/vit-base-patch16-224",
|
4 |
"backend": {
|
5 |
"name": "pytorch",
|
6 |
+
"version": "2.4.1+rocm6.1",
|
7 |
"_target_": "optimum_benchmark.backends.pytorch.backend.PyTorchBackend",
|
8 |
"task": "image-classification",
|
9 |
"library": "transformers",
|
|
|
11 |
"model": "google/vit-base-patch16-224",
|
12 |
"processor": "google/vit-base-patch16-224",
|
13 |
"device": "cuda",
|
14 |
+
"device_ids": "4",
|
15 |
"seed": 42,
|
16 |
"inter_op_num_threads": null,
|
17 |
"intra_op_num_threads": null,
|
|
|
111 |
"load": {
|
112 |
"memory": {
|
113 |
"unit": "MB",
|
114 |
+
"max_ram": 1386.749952,
|
115 |
"max_global_vram": 68702.69952,
|
116 |
+
"max_process_vram": 0.0,
|
117 |
"max_reserved": 400.556032,
|
118 |
"max_allocated": 346.271744
|
119 |
},
|
120 |
"latency": {
|
121 |
"unit": "s",
|
122 |
"count": 1,
|
123 |
+
"total": 8.04158544921875,
|
124 |
+
"mean": 8.04158544921875,
|
125 |
"stdev": 0.0,
|
126 |
+
"p50": 8.04158544921875,
|
127 |
+
"p90": 8.04158544921875,
|
128 |
+
"p95": 8.04158544921875,
|
129 |
+
"p99": 8.04158544921875,
|
130 |
"values": [
|
131 |
+
8.04158544921875
|
132 |
]
|
133 |
},
|
134 |
"throughput": null,
|
|
|
138 |
"forward": {
|
139 |
"memory": {
|
140 |
"unit": "MB",
|
141 |
+
"max_ram": 1556.86912,
|
142 |
"max_global_vram": 68702.69952,
|
143 |
+
"max_process_vram": 0.0,
|
144 |
"max_reserved": 406.847488,
|
145 |
+
"max_allocated": 354.740224
|
146 |
},
|
147 |
"latency": {
|
148 |
"unit": "s",
|
149 |
+
"count": 174,
|
150 |
+
"total": 0.9947851018905641,
|
151 |
+
"mean": 0.005717155757991747,
|
152 |
+
"stdev": 0.00016105952634478562,
|
153 |
+
"p50": 0.0056613399982452395,
|
154 |
+
"p90": 0.00589185094833374,
|
155 |
+
"p95": 0.006034746766090392,
|
156 |
+
"p99": 0.006376022477149963,
|
157 |
"values": [
|
158 |
+
0.005920779228210449,
|
159 |
+
0.005938058853149414,
|
160 |
+
0.0059087791442871095,
|
161 |
+
0.005733098983764649,
|
162 |
+
0.005765580177307129,
|
163 |
+
0.0058878188133239745,
|
164 |
+
0.005893579006195068,
|
165 |
+
0.00591197919845581,
|
166 |
+
0.005852299213409424,
|
167 |
+
0.005872299194335937,
|
168 |
+
0.005852299213409424,
|
169 |
+
0.005865738868713379,
|
170 |
+
0.005794700145721436,
|
171 |
+
0.005769258975982666,
|
172 |
+
0.005716939926147461,
|
173 |
+
0.0056772599220275876,
|
174 |
+
0.005666059970855713,
|
175 |
+
0.005687819004058838,
|
176 |
+
0.005805899143218994,
|
177 |
+
0.0056276597976684575,
|
178 |
+
0.005642380237579346,
|
179 |
+
0.0056321401596069335,
|
180 |
+
0.005667978763580322,
|
181 |
+
0.0056535801887512204,
|
182 |
+
0.005682380199432373,
|
183 |
+
0.005652939796447754,
|
184 |
+
0.0056516599655151364,
|
185 |
+
0.00566126012802124,
|
186 |
+
0.005687339782714844,
|
187 |
+
0.005692619800567627,
|
188 |
+
0.005642378807067871,
|
189 |
+
0.005621580123901368,
|
190 |
+
0.0056460599899291995,
|
191 |
+
0.005661419868469238,
|
192 |
+
0.005679500102996826,
|
193 |
+
0.0056319799423217775,
|
194 |
+
0.0056339001655578615,
|
195 |
+
0.005615019798278808,
|
196 |
+
0.005629580020904541,
|
197 |
+
0.005660459995269775,
|
198 |
+
0.0058494191169738766,
|
199 |
+
0.005943338871002197,
|
200 |
+
0.0056345400810241695,
|
201 |
+
0.005670219898223877,
|
202 |
+
0.005631340026855469,
|
203 |
+
0.005635340213775635,
|
204 |
+
0.005598859786987305,
|
205 |
+
0.00601133918762207,
|
206 |
+
0.005633100032806397,
|
207 |
+
0.00565310001373291,
|
208 |
+
0.0056516599655151364,
|
209 |
+
0.00567278003692627,
|
210 |
+
0.005628459930419922,
|
211 |
+
0.005634699821472168,
|
212 |
+
0.005641739845275879,
|
213 |
+
0.005658858776092529,
|
214 |
+
0.005630539894104004,
|
215 |
+
0.005641099929809571,
|
216 |
+
0.005629419803619385,
|
217 |
+
0.005638218879699707,
|
218 |
+
0.00565310001373291,
|
219 |
+
0.005628940105438233,
|
220 |
+
0.005679500102996826,
|
221 |
+
0.0056822199821472165,
|
222 |
+
0.0056631798744201664,
|
223 |
+
0.005641580104827881,
|
224 |
+
0.005667180061340332,
|
225 |
+
0.005655020236968994,
|
226 |
+
0.00564493989944458,
|
227 |
+
0.005659500122070313,
|
228 |
+
0.005652460098266601,
|
229 |
+
0.0056860589981079105,
|
230 |
+
0.005666860103607178,
|
231 |
+
0.0056412601470947265,
|
232 |
+
0.005635340213775635,
|
233 |
+
0.0056228599548339845,
|
234 |
+
0.005673099994659423,
|
235 |
+
0.005821098804473877,
|
236 |
+
0.005686540126800537,
|
237 |
+
0.0056655797958374025,
|
238 |
+
0.005659339904785156,
|
239 |
+
0.005648300170898437,
|
240 |
+
0.0056652588844299315,
|
241 |
+
0.005643499851226807,
|
242 |
+
0.005675819873809815,
|
243 |
+
0.005661899089813232,
|
244 |
+
0.00567326021194458,
|
245 |
+
0.005661419868469238,
|
246 |
+
0.005661900043487549,
|
247 |
+
0.005680300235748291,
|
248 |
+
0.005682859897613525,
|
249 |
+
0.005660940170288086,
|
250 |
+
0.005650539875030517,
|
251 |
+
0.005656300067901611,
|
252 |
+
0.005629419803619385,
|
253 |
+
0.0056724600791931154,
|
254 |
+
0.0056462202072143555,
|
255 |
+
0.005681579113006592,
|
256 |
+
0.005626220226287842,
|
257 |
+
0.0056875,
|
258 |
+
0.005668779850006103,
|
259 |
+
0.00567549991607666,
|
260 |
+
0.00569645881652832,
|
261 |
+
0.005684939861297608,
|
262 |
+
0.005682380199432373,
|
263 |
+
0.005675020217895507,
|
264 |
+
0.005751180171966553,
|
265 |
+
0.00567710018157959,
|
266 |
+
0.005677420139312744,
|
267 |
+
0.005647180080413819,
|
268 |
+
0.005634379863739014,
|
269 |
+
0.005671020030975342,
|
270 |
+
0.005655660152435303,
|
271 |
+
0.005650539875030517,
|
272 |
+
0.005643499851226807,
|
273 |
+
0.005637420177459717,
|
274 |
+
0.005651339054107666,
|
275 |
+
0.005648459911346436,
|
276 |
+
0.005641580104827881,
|
277 |
+
0.005652460098266601,
|
278 |
+
0.005650219917297364,
|
279 |
+
0.005651500225067139,
|
280 |
+
0.005664780139923096,
|
281 |
+
0.005670380115509033,
|
282 |
+
0.005643179893493652,
|
283 |
+
0.005652460098266601,
|
284 |
+
0.005653738975524902,
|
285 |
+
0.005670859813690186,
|
286 |
+
0.00565742015838623,
|
287 |
+
0.0056340589523315426,
|
288 |
+
0.005637259960174561,
|
289 |
+
0.005654220104217529,
|
290 |
+
0.005657259941101074,
|
291 |
+
0.005669740200042725,
|
292 |
+
0.005666699886322022,
|
293 |
+
0.005676458835601807,
|
294 |
+
0.0056466999053955075,
|
295 |
+
0.005667019844055176,
|
296 |
+
0.005617740154266357,
|
297 |
+
0.005675339221954346,
|
298 |
+
0.005639019966125488,
|
299 |
+
0.005625740051269531,
|
300 |
+
0.0056479802131652835,
|
301 |
+
0.0056607799530029295,
|
302 |
+
0.0056412601470947265,
|
303 |
+
0.005636139869689942,
|
304 |
+
0.0056817388534545895,
|
305 |
+
0.005643819808959961,
|
306 |
+
0.005658539772033691,
|
307 |
+
0.005670700073242187,
|
308 |
+
0.005654220104217529,
|
309 |
+
0.005658060073852539,
|
310 |
+
0.005658539772033691,
|
311 |
+
0.005675020217895507,
|
312 |
+
0.005660459995269775,
|
313 |
+
0.005670539855957031,
|
314 |
+
0.005665420055389404,
|
315 |
+
0.005633580207824707,
|
316 |
+
0.005666859149932861,
|
317 |
+
0.005624300003051758,
|
318 |
+
0.00564654016494751,
|
319 |
+
0.005647339820861816,
|
320 |
+
0.005836619853973389,
|
321 |
+
0.006368937969207763,
|
322 |
+
0.006457417011260986,
|
323 |
+
0.006335658073425293,
|
324 |
+
0.006351976871490478,
|
325 |
+
0.006358537197113037,
|
326 |
+
0.006395176887512207,
|
327 |
+
0.006345097064971924,
|
328 |
+
0.0060809369087219236,
|
329 |
+
0.005969258785247802,
|
330 |
+
0.00607821798324585,
|
331 |
+
0.005967819213867188
|
332 |
]
|
333 |
},
|
334 |
"throughput": {
|
335 |
"unit": "samples/s",
|
336 |
+
"value": 174.91214903532168
|
337 |
},
|
338 |
"energy": null,
|
339 |
"efficiency": null
|