Upload cuda_inference_transformers_image-classification_google/vit-base-patch16-224/benchmark.json with huggingface_hub
Browse files
cuda_inference_transformers_image-classification_google/vit-base-patch16-224/benchmark.json
CHANGED
@@ -3,7 +3,7 @@
|
|
3 |
"name": "cuda_inference_transformers_image-classification_google/vit-base-patch16-224",
|
4 |
"backend": {
|
5 |
"name": "pytorch",
|
6 |
-
"version": "2.
|
7 |
"_target_": "optimum_benchmark.backends.pytorch.backend.PyTorchBackend",
|
8 |
"task": "image-classification",
|
9 |
"library": "transformers",
|
@@ -11,7 +11,7 @@
|
|
11 |
"model": "google/vit-base-patch16-224",
|
12 |
"processor": "google/vit-base-patch16-224",
|
13 |
"device": "cuda",
|
14 |
-
"device_ids": "
|
15 |
"seed": 42,
|
16 |
"inter_op_num_threads": null,
|
17 |
"intra_op_num_threads": null,
|
@@ -111,24 +111,24 @@
|
|
111 |
"load": {
|
112 |
"memory": {
|
113 |
"unit": "MB",
|
114 |
-
"max_ram":
|
115 |
-
"max_global_vram":
|
116 |
-
"max_process_vram":
|
117 |
"max_reserved": 400.556032,
|
118 |
"max_allocated": 346.271744
|
119 |
},
|
120 |
"latency": {
|
121 |
"unit": "s",
|
122 |
"count": 1,
|
123 |
-
"total": 7.
|
124 |
-
"mean": 7.
|
125 |
"stdev": 0.0,
|
126 |
-
"p50": 7.
|
127 |
-
"p90": 7.
|
128 |
-
"p95": 7.
|
129 |
-
"p99": 7.
|
130 |
"values": [
|
131 |
-
7.
|
132 |
]
|
133 |
},
|
134 |
"throughput": null,
|
@@ -138,176 +138,188 @@
|
|
138 |
"forward": {
|
139 |
"memory": {
|
140 |
"unit": "MB",
|
141 |
-
"max_ram":
|
142 |
-
"max_global_vram":
|
143 |
-
"max_process_vram":
|
144 |
"max_reserved": 406.847488,
|
145 |
-
"max_allocated":
|
146 |
},
|
147 |
"latency": {
|
148 |
"unit": "s",
|
149 |
-
"count":
|
150 |
-
"total": 0.
|
151 |
-
"mean": 0.
|
152 |
-
"stdev": 0.
|
153 |
-
"p50": 0.
|
154 |
-
"p90": 0.
|
155 |
-
"p95": 0.
|
156 |
-
"p99": 0.
|
157 |
"values": [
|
158 |
-
0.
|
159 |
-
0.
|
160 |
-
0.
|
161 |
-
0.
|
162 |
-
0.
|
163 |
-
0.
|
164 |
-
0.
|
165 |
-
0.
|
166 |
-
0.
|
167 |
-
0.
|
168 |
-
0.
|
169 |
-
0.
|
170 |
-
0.
|
171 |
-
0.
|
172 |
-
0.
|
173 |
-
0.
|
174 |
-
0.
|
175 |
-
0.
|
176 |
-
0.
|
177 |
-
0.
|
178 |
-
0.
|
179 |
-
0.
|
180 |
-
0.
|
181 |
-
0.
|
182 |
-
0.
|
183 |
-
0.
|
184 |
-
0.
|
185 |
-
0.
|
186 |
-
0.
|
187 |
-
0.
|
188 |
-
0.
|
189 |
-
0.
|
190 |
-
0.
|
191 |
-
0.
|
192 |
-
0.
|
193 |
-
0.
|
194 |
-
0.
|
195 |
-
0.
|
196 |
-
0.
|
197 |
-
0.
|
198 |
-
0.
|
199 |
-
0.
|
200 |
-
0.
|
201 |
-
0.
|
202 |
-
0.
|
203 |
-
0.
|
204 |
-
0.
|
205 |
-
0.
|
206 |
-
0.
|
207 |
-
0.
|
208 |
-
0.
|
209 |
-
0.
|
210 |
-
0.
|
211 |
-
0.
|
212 |
-
0.
|
213 |
-
0.
|
214 |
-
0.
|
215 |
-
0.
|
216 |
-
0.
|
217 |
-
0.
|
218 |
-
0.
|
219 |
-
0.
|
220 |
-
0.
|
221 |
-
0.
|
222 |
-
0.
|
223 |
-
0.
|
224 |
-
0.
|
225 |
-
0.
|
226 |
-
0.
|
227 |
-
0.
|
228 |
-
0.
|
229 |
-
0.
|
230 |
-
0.
|
231 |
-
0.
|
232 |
-
0.
|
233 |
-
0.
|
234 |
-
0.
|
235 |
-
0.
|
236 |
-
0.
|
237 |
-
0.
|
238 |
-
0.
|
239 |
-
0.
|
240 |
-
0.
|
241 |
-
0.
|
242 |
-
0.
|
243 |
-
0.
|
244 |
-
0.
|
245 |
-
0.
|
246 |
-
0.
|
247 |
-
0.
|
248 |
-
0.
|
249 |
-
0.
|
250 |
-
0.
|
251 |
-
0.
|
252 |
-
0.
|
253 |
-
0.
|
254 |
-
0.
|
255 |
-
0.
|
256 |
-
0.
|
257 |
-
0.
|
258 |
-
0.
|
259 |
-
0.
|
260 |
-
0.
|
261 |
-
0.
|
262 |
-
0.
|
263 |
-
0.
|
264 |
-
0.
|
265 |
-
0.
|
266 |
-
0.
|
267 |
-
0.
|
268 |
-
0.
|
269 |
-
0.
|
270 |
-
0.
|
271 |
-
0.
|
272 |
-
0.
|
273 |
-
0.
|
274 |
-
0.
|
275 |
-
0.
|
276 |
-
0.
|
277 |
-
0.
|
278 |
-
0.
|
279 |
-
0.
|
280 |
-
0.
|
281 |
-
0.
|
282 |
-
0.
|
283 |
-
0.
|
284 |
-
0.
|
285 |
-
0.
|
286 |
-
0.
|
287 |
-
0.
|
288 |
-
0.
|
289 |
-
0.
|
290 |
-
0.
|
291 |
-
0.
|
292 |
-
0.
|
293 |
-
0.
|
294 |
-
0.
|
295 |
-
0.
|
296 |
-
0.
|
297 |
-
0.
|
298 |
-
0.
|
299 |
-
0.
|
300 |
-
0.
|
301 |
-
0.
|
302 |
-
0.
|
303 |
-
0.
|
304 |
-
0.
|
305 |
-
0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
306 |
]
|
307 |
},
|
308 |
"throughput": {
|
309 |
"unit": "samples/s",
|
310 |
-
"value":
|
311 |
},
|
312 |
"energy": null,
|
313 |
"efficiency": null
|
|
|
3 |
"name": "cuda_inference_transformers_image-classification_google/vit-base-patch16-224",
|
4 |
"backend": {
|
5 |
"name": "pytorch",
|
6 |
+
"version": "2.4.0+rocm6.1",
|
7 |
"_target_": "optimum_benchmark.backends.pytorch.backend.PyTorchBackend",
|
8 |
"task": "image-classification",
|
9 |
"library": "transformers",
|
|
|
11 |
"model": "google/vit-base-patch16-224",
|
12 |
"processor": "google/vit-base-patch16-224",
|
13 |
"device": "cuda",
|
14 |
+
"device_ids": "5",
|
15 |
"seed": 42,
|
16 |
"inter_op_num_threads": null,
|
17 |
"intra_op_num_threads": null,
|
|
|
111 |
"load": {
|
112 |
"memory": {
|
113 |
"unit": "MB",
|
114 |
+
"max_ram": 1386.999808,
|
115 |
+
"max_global_vram": 11.128832,
|
116 |
+
"max_process_vram": 0.0,
|
117 |
"max_reserved": 400.556032,
|
118 |
"max_allocated": 346.271744
|
119 |
},
|
120 |
"latency": {
|
121 |
"unit": "s",
|
122 |
"count": 1,
|
123 |
+
"total": 7.83645263671875,
|
124 |
+
"mean": 7.83645263671875,
|
125 |
"stdev": 0.0,
|
126 |
+
"p50": 7.83645263671875,
|
127 |
+
"p90": 7.83645263671875,
|
128 |
+
"p95": 7.83645263671875,
|
129 |
+
"p99": 7.83645263671875,
|
130 |
"values": [
|
131 |
+
7.83645263671875
|
132 |
]
|
133 |
},
|
134 |
"throughput": null,
|
|
|
138 |
"forward": {
|
139 |
"memory": {
|
140 |
"unit": "MB",
|
141 |
+
"max_ram": 1557.737472,
|
142 |
+
"max_global_vram": 11.38688,
|
143 |
+
"max_process_vram": 0.0,
|
144 |
"max_reserved": 406.847488,
|
145 |
+
"max_allocated": 354.740224
|
146 |
},
|
147 |
"latency": {
|
148 |
"unit": "s",
|
149 |
+
"count": 160,
|
150 |
+
"total": 0.9980249857902529,
|
151 |
+
"mean": 0.00623765616118908,
|
152 |
+
"stdev": 0.0008198818897457517,
|
153 |
+
"p50": 0.006320936918258666,
|
154 |
+
"p90": 0.00641356086730957,
|
155 |
+
"p95": 0.006483031988143921,
|
156 |
+
"p99": 0.006579219245910644,
|
157 |
"values": [
|
158 |
+
0.005835817813873291,
|
159 |
+
0.005921739101409912,
|
160 |
+
0.005742538928985596,
|
161 |
+
0.005925098896026612,
|
162 |
+
0.005747018814086914,
|
163 |
+
0.005883338928222656,
|
164 |
+
0.005746539115905762,
|
165 |
+
0.005550378799438476,
|
166 |
+
0.005540299892425537,
|
167 |
+
0.00552269983291626,
|
168 |
+
0.005508619785308838,
|
169 |
+
0.005476940155029297,
|
170 |
+
0.005486380100250244,
|
171 |
+
0.005468939781188965,
|
172 |
+
0.005483500003814697,
|
173 |
+
0.00556541919708252,
|
174 |
+
0.0056111798286437985,
|
175 |
+
0.005838698863983154,
|
176 |
+
0.005641418933868408,
|
177 |
+
0.005426380157470703,
|
178 |
+
0.0054177408218383785,
|
179 |
+
0.005445260047912598,
|
180 |
+
0.015368103981018066,
|
181 |
+
0.004619983196258545,
|
182 |
+
0.00463774299621582,
|
183 |
+
0.004622383117675781,
|
184 |
+
0.004615822792053223,
|
185 |
+
0.004839023113250732,
|
186 |
+
0.0058513379096984865,
|
187 |
+
0.005841739177703857,
|
188 |
+
0.005747659206390381,
|
189 |
+
0.005931018829345703,
|
190 |
+
0.0059063777923583985,
|
191 |
+
0.006299497127532959,
|
192 |
+
0.006286376953125,
|
193 |
+
0.006300776958465576,
|
194 |
+
0.006301577091217041,
|
195 |
+
0.006208296775817871,
|
196 |
+
0.006006217956542968,
|
197 |
+
0.006307336807250976,
|
198 |
+
0.00632509708404541,
|
199 |
+
0.00629789686203003,
|
200 |
+
0.006315496921539307,
|
201 |
+
0.006305417060852051,
|
202 |
+
0.0062631769180297855,
|
203 |
+
0.006323816776275634,
|
204 |
+
0.0062802968025207516,
|
205 |
+
0.006306217193603515,
|
206 |
+
0.006310536861419678,
|
207 |
+
0.006294217109680176,
|
208 |
+
0.006300937175750732,
|
209 |
+
0.006295816898345947,
|
210 |
+
0.006290535926818847,
|
211 |
+
0.006279497146606445,
|
212 |
+
0.006315017223358154,
|
213 |
+
0.006290856838226318,
|
214 |
+
0.006287817001342773,
|
215 |
+
0.006270856857299805,
|
216 |
+
0.006312777042388916,
|
217 |
+
0.006329576969146728,
|
218 |
+
0.006462056159973145,
|
219 |
+
0.006315977096557617,
|
220 |
+
0.006300457000732422,
|
221 |
+
0.006359817028045655,
|
222 |
+
0.006301577091217041,
|
223 |
+
0.0063225369453430175,
|
224 |
+
0.006477096080780029,
|
225 |
+
0.0062993369102478025,
|
226 |
+
0.006300776958465576,
|
227 |
+
0.0063225369453430175,
|
228 |
+
0.006295977115631103,
|
229 |
+
0.0062852568626403805,
|
230 |
+
0.006282697200775147,
|
231 |
+
0.006285896778106689,
|
232 |
+
0.006289257049560547,
|
233 |
+
0.0062830171585083,
|
234 |
+
0.006313416004180908,
|
235 |
+
0.006563015937805176,
|
236 |
+
0.006375977039337158,
|
237 |
+
0.006360616207122803,
|
238 |
+
0.006370536804199219,
|
239 |
+
0.0063607759475708,
|
240 |
+
0.0063630170822143554,
|
241 |
+
0.0063273367881774905,
|
242 |
+
0.0063270158767700195,
|
243 |
+
0.006323976993560791,
|
244 |
+
0.006324936866760254,
|
245 |
+
0.006344616889953613,
|
246 |
+
0.006300776958465576,
|
247 |
+
0.006347657203674317,
|
248 |
+
0.006327657222747802,
|
249 |
+
0.006341576099395752,
|
250 |
+
0.006345736980438233,
|
251 |
+
0.006327016830444336,
|
252 |
+
0.00641869592666626,
|
253 |
+
0.006401576042175293,
|
254 |
+
0.006321096897125244,
|
255 |
+
0.0063207769393920895,
|
256 |
+
0.0063084568977355955,
|
257 |
+
0.006310057163238525,
|
258 |
+
0.006299497127532959,
|
259 |
+
0.006326056957244873,
|
260 |
+
0.006344457149505615,
|
261 |
+
0.00631117582321167,
|
262 |
+
0.006333736896514892,
|
263 |
+
0.006319656848907471,
|
264 |
+
0.0063329367637634274,
|
265 |
+
0.0063225369453430175,
|
266 |
+
0.006298057079315186,
|
267 |
+
0.00633549690246582,
|
268 |
+
0.006315176010131836,
|
269 |
+
0.00633277702331543,
|
270 |
+
0.006320296764373779,
|
271 |
+
0.006347177028656006,
|
272 |
+
0.006349896907806397,
|
273 |
+
0.0063678169250488284,
|
274 |
+
0.00634941577911377,
|
275 |
+
0.006319656848907471,
|
276 |
+
0.006344936847686768,
|
277 |
+
0.0063343758583068845,
|
278 |
+
0.006319976806640625,
|
279 |
+
0.006369417190551758,
|
280 |
+
0.006325255870819091,
|
281 |
+
0.006356616973876953,
|
282 |
+
0.006354856967926026,
|
283 |
+
0.006324296951293946,
|
284 |
+
0.0063775768280029295,
|
285 |
+
0.00638477611541748,
|
286 |
+
0.006547976016998291,
|
287 |
+
0.006481895923614502,
|
288 |
+
0.006407017230987549,
|
289 |
+
0.006530695915222168,
|
290 |
+
0.0064591760635375976,
|
291 |
+
0.006364296913146972,
|
292 |
+
0.006360136985778809,
|
293 |
+
0.006413416862487793,
|
294 |
+
0.006538216114044189,
|
295 |
+
0.006504617214202881,
|
296 |
+
0.006403656959533691,
|
297 |
+
0.006413256168365479,
|
298 |
+
0.006602536201477051,
|
299 |
+
0.006390536785125732,
|
300 |
+
0.00636333703994751,
|
301 |
+
0.006394217014312744,
|
302 |
+
0.006563015937805176,
|
303 |
+
0.0063943772315979,
|
304 |
+
0.006382215976715088,
|
305 |
+
0.00636765718460083,
|
306 |
+
0.006420135974884033,
|
307 |
+
0.006342216968536377,
|
308 |
+
0.006421576023101807,
|
309 |
+
0.006384936809539795,
|
310 |
+
0.006407815933227539,
|
311 |
+
0.006383976936340332,
|
312 |
+
0.006364457130432129,
|
313 |
+
0.0063857359886169435,
|
314 |
+
0.006362215995788574,
|
315 |
+
0.0064148569107055665,
|
316 |
+
0.006395336151123047,
|
317 |
+
0.006357896804809571
|
318 |
]
|
319 |
},
|
320 |
"throughput": {
|
321 |
"unit": "samples/s",
|
322 |
+
"value": 160.31662761760353
|
323 |
},
|
324 |
"energy": null,
|
325 |
"efficiency": null
|