IlyasMoutawwakil's picture
Upload cuda_inference_transformers_token-classification_microsoft/deberta-v3-base/benchmark.json with huggingface_hub
f9f8ecd verified
raw
history blame
7.9 kB
{
"config": {
"name": "cuda_inference_transformers_token-classification_microsoft/deberta-v3-base",
"backend": {
"name": "pytorch",
"version": "2.2.2+rocm5.7",
"_target_": "optimum_benchmark.backends.pytorch.backend.PyTorchBackend",
"task": "token-classification",
"library": "transformers",
"model": "microsoft/deberta-v3-base",
"processor": "microsoft/deberta-v3-base",
"device": "cuda",
"device_ids": "0",
"seed": 42,
"inter_op_num_threads": null,
"intra_op_num_threads": null,
"model_kwargs": {},
"processor_kwargs": {},
"hub_kwargs": {},
"no_weights": true,
"device_map": null,
"torch_dtype": null,
"eval_mode": true,
"to_bettertransformer": false,
"low_cpu_mem_usage": null,
"attn_implementation": null,
"cache_implementation": null,
"autocast_enabled": false,
"autocast_dtype": null,
"torch_compile": false,
"torch_compile_target": "forward",
"torch_compile_config": {},
"quantization_scheme": null,
"quantization_config": {},
"deepspeed_inference": false,
"deepspeed_inference_config": {},
"peft_type": null,
"peft_config": {}
},
"scenario": {
"name": "inference",
"_target_": "optimum_benchmark.scenarios.inference.scenario.InferenceScenario",
"iterations": 1,
"duration": 1,
"warmup_runs": 1,
"input_shapes": {
"batch_size": 1,
"num_choices": 2,
"sequence_length": 2
},
"new_tokens": null,
"latency": true,
"memory": true,
"energy": false,
"forward_kwargs": {},
"generate_kwargs": {
"max_new_tokens": 2,
"min_new_tokens": 2
},
"call_kwargs": {
"num_inference_steps": 2
}
},
"launcher": {
"name": "process",
"_target_": "optimum_benchmark.launchers.process.launcher.ProcessLauncher",
"device_isolation": true,
"device_isolation_action": "error",
"start_method": "spawn"
},
"environment": {
"cpu": " AMD EPYC 7763 64-Core Processor",
"cpu_count": 128,
"cpu_ram_mb": 1082015.236096,
"system": "Linux",
"machine": "x86_64",
"platform": "Linux-5.15.0-84-generic-x86_64-with-glibc2.35",
"processor": "x86_64",
"python_version": "3.10.12",
"gpu": [
"Advanced Micro Devices, Inc. [AMD/ATI]"
],
"gpu_count": 1,
"gpu_vram_mb": 68702699520,
"optimum_benchmark_version": "0.2.1",
"optimum_benchmark_commit": "c1d0b062e90b79e7705510c58cea731c0d90da8a",
"transformers_version": "4.40.2",
"transformers_commit": null,
"accelerate_version": "0.30.1",
"accelerate_commit": null,
"diffusers_version": "0.27.2",
"diffusers_commit": null,
"optimum_version": null,
"optimum_commit": null,
"timm_version": "1.0.3",
"timm_commit": null,
"peft_version": null,
"peft_commit": null
}
},
"report": {
"forward": {
"memory": {
"unit": "MB",
"max_ram": 1026.289664,
"max_global_vram": 11512.774656,
"max_process_vram": 277649.358848,
"max_reserved": 773.849088,
"max_allocated": 745.087488
},
"latency": {
"unit": "s",
"count": 78,
"total": 1.002807531356812,
"mean": 0.012856506812266813,
"stdev": 0.00032814440942400343,
"p50": 0.012763944149017334,
"p90": 0.01322653751373291,
"p95": 0.013575491142272949,
"p99": 0.01397465256690979,
"values": [
0.014155387878417969,
0.013071704864501953,
0.013162585258483886,
0.01315042495727539,
0.012939865112304688,
0.012741305351257325,
0.012718263626098633,
0.012727065086364746,
0.012739543914794921,
0.012820025444030762,
0.012781624794006347,
0.012747224807739257,
0.012685144424438476,
0.013010905265808106,
0.012982745170593262,
0.012976505279541016,
0.012761783599853516,
0.012904504776000976,
0.012655064582824707,
0.012827223777770996,
0.012845623970031738,
0.012868345260620117,
0.012589144706726074,
0.012768823623657227,
0.012555225372314453,
0.012747703552246093,
0.012473464012145996,
0.012734424591064454,
0.012552824020385742,
0.01275362491607666,
0.012485624313354492,
0.01257138442993164,
0.012735544204711914,
0.012561465263366699,
0.01273586368560791,
0.012565143585205078,
0.012777624130249023,
0.012545944213867188,
0.01274354362487793,
0.01258450412750244,
0.012766584396362305,
0.012884184837341309,
0.012766104698181152,
0.012626903533935547,
0.012779225349426269,
0.012639863967895508,
0.012808984756469726,
0.012656185150146484,
0.012815223693847657,
0.012650904655456542,
0.012788825035095215,
0.012602264404296876,
0.012780505180358887,
0.012579704284667969,
0.012829625129699707,
0.012654104232788087,
0.013524826049804688,
0.013920666694641114,
0.013565147399902344,
0.01313570499420166,
0.012835704803466796,
0.013805946350097657,
0.013634105682373047,
0.013303706169128418,
0.013193465232849122,
0.01316658592224121,
0.013310264587402344,
0.013121306419372558,
0.012963705062866211,
0.012649463653564454,
0.012648344993591309,
0.012594743728637696,
0.012937305450439453,
0.012657944679260253,
0.012656344413757323,
0.01261538314819336,
0.012598105430603027,
0.012584823608398438
]
},
"throughput": {
"unit": "samples/s",
"value": 77.78162564701225
},
"energy": null,
"efficiency": null
}
}
}