IlyasMoutawwakil's picture
Upload cuda_inference_transformers_image-classification_google/vit-base-patch16-224/benchmark.json with huggingface_hub
ae357bd verified
raw
history blame
10.3 kB
{
"config": {
"name": "cuda_inference_transformers_image-classification_google/vit-base-patch16-224",
"backend": {
"name": "pytorch",
"version": "2.2.2+rocm5.7",
"_target_": "optimum_benchmark.backends.pytorch.backend.PyTorchBackend",
"task": "image-classification",
"library": "transformers",
"model": "google/vit-base-patch16-224",
"processor": "google/vit-base-patch16-224",
"device": "cuda",
"device_ids": "0",
"seed": 42,
"inter_op_num_threads": null,
"intra_op_num_threads": null,
"model_kwargs": {},
"processor_kwargs": {},
"hub_kwargs": {},
"no_weights": true,
"device_map": null,
"torch_dtype": null,
"eval_mode": true,
"to_bettertransformer": false,
"low_cpu_mem_usage": null,
"attn_implementation": null,
"cache_implementation": null,
"autocast_enabled": false,
"autocast_dtype": null,
"torch_compile": false,
"torch_compile_target": "forward",
"torch_compile_config": {},
"quantization_scheme": null,
"quantization_config": {},
"deepspeed_inference": false,
"deepspeed_inference_config": {},
"peft_type": null,
"peft_config": {}
},
"scenario": {
"name": "inference",
"_target_": "optimum_benchmark.scenarios.inference.scenario.InferenceScenario",
"iterations": 1,
"duration": 1,
"warmup_runs": 1,
"input_shapes": {
"batch_size": 1,
"num_choices": 2,
"sequence_length": 2
},
"new_tokens": null,
"latency": true,
"memory": true,
"energy": false,
"forward_kwargs": {},
"generate_kwargs": {
"max_new_tokens": 2,
"min_new_tokens": 2
},
"call_kwargs": {
"num_inference_steps": 2
}
},
"launcher": {
"name": "process",
"_target_": "optimum_benchmark.launchers.process.launcher.ProcessLauncher",
"device_isolation": true,
"device_isolation_action": "error",
"start_method": "spawn"
},
"environment": {
"cpu": " AMD EPYC 7763 64-Core Processor",
"cpu_count": 128,
"cpu_ram_mb": 1082015.236096,
"system": "Linux",
"machine": "x86_64",
"platform": "Linux-5.15.0-84-generic-x86_64-with-glibc2.35",
"processor": "x86_64",
"python_version": "3.10.12",
"gpu": [
"Advanced Micro Devices, Inc. [AMD/ATI]"
],
"gpu_count": 1,
"gpu_vram_mb": 68702699520,
"optimum_benchmark_version": "0.2.1",
"optimum_benchmark_commit": "0b24af9d7b7751f74b160dfade73ef78e10964d6",
"transformers_version": "4.40.2",
"transformers_commit": null,
"accelerate_version": "0.30.1",
"accelerate_commit": null,
"diffusers_version": "0.27.2",
"diffusers_commit": null,
"optimum_version": null,
"optimum_commit": null,
"timm_version": "1.0.3",
"timm_commit": null,
"peft_version": null,
"peft_commit": null
}
},
"report": {
"forward": {
"memory": {
"unit": "MB",
"max_ram": 1060.921344,
"max_global_vram": 2977.390592,
"max_process_vram": 177958.797312,
"max_reserved": 406.847488,
"max_allocated": 355.912704
},
"latency": {
"unit": "s",
"count": 134,
"total": 0.993765127182007,
"mean": 0.0074161576655373635,
"stdev": 0.00022013002558605839,
"p50": 0.007373180866241455,
"p90": 0.007675228071212768,
"p95": 0.007889827322959899,
"p99": 0.008086676378250121,
"values": [
0.007787980079650879,
0.007529419898986816,
0.007723340034484863,
0.008048778533935546,
0.008089738845825195,
0.00815229892730713,
0.008080458641052246,
0.008037899971008301,
0.00796973991394043,
0.007882379055023193,
0.007771979808807373,
0.007670859813690186,
0.00790365982055664,
0.007537740230560303,
0.00747278118133545,
0.007359500885009766,
0.007345100879669189,
0.007380620956420898,
0.0073108611106872555,
0.007385100841522217,
0.0074012608528137205,
0.007334862232208252,
0.007404140949249268,
0.007339500904083252,
0.007327180862426758,
0.007291182041168213,
0.007278381824493408,
0.007416780948638916,
0.007481740951538086,
0.007489581108093262,
0.007669579982757568,
0.007584300041198731,
0.007603020191192627,
0.007666861057281494,
0.007660140991210937,
0.007719979763031006,
0.007579659938812256,
0.0075658998489379885,
0.007530220985412598,
0.007508780002593994,
0.007503820896148682,
0.007477420806884766,
0.007450701236724854,
0.007450060844421387,
0.007444140911102295,
0.007478061199188232,
0.007644780158996582,
0.007788139820098877,
0.00767710018157959,
0.007563819885253906,
0.007541740894317627,
0.007432621002197265,
0.007471981048583984,
0.00748206090927124,
0.007486859798431397,
0.007353100776672363,
0.007359981060028076,
0.007383020877838134,
0.007520141124725342,
0.007418540954589844,
0.007355660915374756,
0.007293901920318604,
0.007274541854858398,
0.007305420875549316,
0.0072417411804199215,
0.007255180835723877,
0.00733358097076416,
0.007430221080780029,
0.007575980186462402,
0.007621100902557373,
0.007537580013275146,
0.007531980991363526,
0.007430700778961181,
0.007447660923004151,
0.00743294095993042,
0.00747245979309082,
0.007474700927734375,
0.007400940895080566,
0.0073939008712768555,
0.007405741214752197,
0.007356781959533692,
0.007321422100067139,
0.0073838210105896,
0.0073657407760620115,
0.007304622173309326,
0.007344942092895507,
0.0072310218811035155,
0.007182701110839844,
0.007210862159729004,
0.007215181827545166,
0.007237901210784912,
0.007165262222290039,
0.007134860992431641,
0.007165582180023194,
0.007148941040039062,
0.007173262119293213,
0.007196142196655274,
0.007227341175079346,
0.007551821231842041,
0.007499660015106201,
0.007421260833740235,
0.007349260807037353,
0.0072753410339355465,
0.007292460918426513,
0.00714638090133667,
0.0072615818977355955,
0.00723534107208252,
0.007337261199951172,
0.007228940963745117,
0.007187982082366943,
0.007240140914916992,
0.007260941028594971,
0.007217260837554931,
0.007234541893005371,
0.0072227010726928715,
0.007332460880279541,
0.007293900966644287,
0.00725150203704834,
0.0072561421394348145,
0.0072724609375,
0.007248941898345947,
0.007287662029266357,
0.007108302116394043,
0.007226861953735351,
0.007170540809631348,
0.007177102088928223,
0.007210540771484375,
0.007120302200317383,
0.007253581047058105,
0.007168302059173584,
0.007171981811523438,
0.0071423821449279785,
0.0071716618537902834,
0.007133901119232178
]
},
"throughput": {
"unit": "samples/s",
"value": 134.84071470688474
},
"energy": null,
"efficiency": null
}
}
}