File size: 7,347 Bytes
3ee2845
 
 
 
 
 
 
 
 
cfb5812
817363a
 
3ee2845
 
 
 
 
817363a
 
3ee2845
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f09252
e166fc9
 
3ee2845
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85414e9
 
3ee2845
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4b1a25
5926f4f
d9ebb99
3ee2845
89b1890
3ee2845
029b4aa
3ee2845
 
 
029b4aa
3ee2845
 
 
 
 
 
 
 
 
5926f4f
 
 
3611d96
 
3ee2845
 
 
 
5926f4f
 
 
 
 
 
 
3ee2845
5926f4f
 
 
 
 
3ee2845
 
 
 
5926f4f
3ee2845
 
 
 
 
 
 
5926f4f
 
 
3611d96
 
3ee2845
 
 
 
5926f4f
 
 
 
 
 
 
3ee2845
5926f4f
 
3ee2845
 
 
 
5926f4f
3ee2845
 
 
 
 
 
 
5926f4f
 
 
3611d96
 
3ee2845
 
 
 
5926f4f
 
 
 
 
 
 
3ee2845
5926f4f
 
 
3ee2845
 
 
 
5926f4f
3ee2845
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
{
    "config": {
        "name": "cuda_training_transformers_fill-mask_google-bert/bert-base-uncased",
        "backend": {
            "name": "pytorch",
            "version": "2.2.2+rocm5.7",
            "_target_": "optimum_benchmark.backends.pytorch.backend.PyTorchBackend",
            "task": "fill-mask",
            "library": "transformers",
            "model_type": "bert",
            "model": "google-bert/bert-base-uncased",
            "processor": "google-bert/bert-base-uncased",
            "device": "cuda",
            "device_ids": "0",
            "seed": 42,
            "inter_op_num_threads": null,
            "intra_op_num_threads": null,
            "model_kwargs": {},
            "processor_kwargs": {},
            "no_weights": true,
            "device_map": null,
            "torch_dtype": null,
            "eval_mode": true,
            "to_bettertransformer": false,
            "low_cpu_mem_usage": null,
            "attn_implementation": null,
            "cache_implementation": null,
            "autocast_enabled": false,
            "autocast_dtype": null,
            "torch_compile": false,
            "torch_compile_target": "forward",
            "torch_compile_config": {},
            "quantization_scheme": null,
            "quantization_config": {},
            "deepspeed_inference": false,
            "deepspeed_inference_config": {},
            "peft_type": null,
            "peft_config": {}
        },
        "scenario": {
            "name": "training",
            "_target_": "optimum_benchmark.scenarios.training.scenario.TrainingScenario",
            "max_steps": 5,
            "warmup_steps": 2,
            "dataset_shapes": {
                "dataset_size": 500,
                "sequence_length": 16,
                "num_choices": 1
            },
            "training_arguments": {
                "per_device_train_batch_size": 2,
                "gradient_accumulation_steps": 1,
                "output_dir": "./trainer_output",
                "evaluation_strategy": "no",
                "eval_strategy": "no",
                "save_strategy": "no",
                "do_train": true,
                "use_cpu": false,
                "max_steps": 5,
                "do_eval": false,
                "do_predict": false,
                "report_to": "none",
                "skip_memory_metrics": true,
                "ddp_find_unused_parameters": false
            },
            "latency": true,
            "memory": true,
            "energy": false
        },
        "launcher": {
            "name": "process",
            "_target_": "optimum_benchmark.launchers.process.launcher.ProcessLauncher",
            "device_isolation": true,
            "device_isolation_action": "error",
            "numactl": false,
            "numactl_kwargs": {},
            "start_method": "spawn"
        },
        "environment": {
            "cpu": " AMD EPYC 7763 64-Core Processor",
            "cpu_count": 128,
            "cpu_ram_mb": 1082015.236096,
            "system": "Linux",
            "machine": "x86_64",
            "platform": "Linux-5.15.0-84-generic-x86_64-with-glibc2.35",
            "processor": "x86_64",
            "python_version": "3.10.12",
            "gpu": [
                "Advanced Micro Devices, Inc. [AMD/ATI]"
            ],
            "gpu_count": 1,
            "gpu_vram_mb": 68702699520,
            "optimum_benchmark_version": "0.3.1",
            "optimum_benchmark_commit": "5ae03a669d2c4893dc609854294ec3bac19528a3",
            "transformers_version": "4.42.4",
            "transformers_commit": null,
            "accelerate_version": "0.32.1",
            "accelerate_commit": null,
            "diffusers_version": "0.29.2",
            "diffusers_commit": null,
            "optimum_version": null,
            "optimum_commit": null,
            "timm_version": "1.0.7",
            "timm_commit": null,
            "peft_version": null,
            "peft_commit": null
        }
    },
    "report": {
        "overall": {
            "memory": {
                "unit": "MB",
                "max_ram": 1135.616,
                "max_global_vram": 2953.179136,
                "max_process_vram": 349785.923584,
                "max_reserved": 2497.708032,
                "max_allocated": 2195.345408
            },
            "latency": {
                "unit": "s",
                "count": 5,
                "total": 0.8018453063964844,
                "mean": 0.1603690612792969,
                "stdev": 0.2306579942900457,
                "p50": 0.045824470520019533,
                "p90": 0.39140536193847664,
                "p95": 0.5065438980102538,
                "p99": 0.5986547268676757,
                "values": [
                    0.6216824340820313,
                    0.04598975372314453,
                    0.045824470520019533,
                    0.044190563201904294,
                    0.044158084869384766
                ]
            },
            "throughput": {
                "unit": "samples/s",
                "value": 62.356167207240276
            },
            "energy": null,
            "efficiency": null
        },
        "warmup": {
            "memory": {
                "unit": "MB",
                "max_ram": 1135.616,
                "max_global_vram": 2953.179136,
                "max_process_vram": 349785.923584,
                "max_reserved": 2497.708032,
                "max_allocated": 2195.345408
            },
            "latency": {
                "unit": "s",
                "count": 2,
                "total": 0.6676721878051758,
                "mean": 0.3338360939025879,
                "stdev": 0.2878463401794434,
                "p50": 0.3338360939025879,
                "p90": 0.5641131660461426,
                "p95": 0.5928978000640869,
                "p99": 0.6159255072784424,
                "values": [
                    0.6216824340820313,
                    0.04598975372314453
                ]
            },
            "throughput": {
                "unit": "samples/s",
                "value": 11.981927877358835
            },
            "energy": null,
            "efficiency": null
        },
        "train": {
            "memory": {
                "unit": "MB",
                "max_ram": 1135.616,
                "max_global_vram": 2953.179136,
                "max_process_vram": 349785.923584,
                "max_reserved": 2497.708032,
                "max_allocated": 2195.345408
            },
            "latency": {
                "unit": "s",
                "count": 3,
                "total": 0.1341731185913086,
                "mean": 0.04472437286376953,
                "stdev": 0.0007779995074916493,
                "p50": 0.044190563201904294,
                "p90": 0.045497689056396486,
                "p95": 0.045661079788208006,
                "p99": 0.04579179237365723,
                "values": [
                    0.045824470520019533,
                    0.044190563201904294,
                    0.044158084869384766
                ]
            },
            "throughput": {
                "unit": "samples/s",
                "value": 134.15503931773407
            },
            "energy": null,
            "efficiency": null
        }
    }
}