Datasets:

Modalities:
Image
Languages:
English
Libraries:
Datasets
License:
scipostlayout_v1 / load_dataset.py
shohei-ta's picture
Upload 9 files
9e430eb verified
import os
import errno
import os.path as osp
from typing import List, Set, Union
import json
from pathlib import Path
from typing import List, Set, Union, Dict
import torch
from torch.utils.data import Dataset
import seaborn as sns
from pycocotools.coco import COCO
"""
load raw data
"""
def makedirs(path):
try:
os.makedirs(osp.expanduser(osp.normpath(path)))
except OSError as e:
if e.errno != errno.EEXIST and osp.isdir(path):
raise e
def files_exist(files):
return all([osp.exists(f) for f in files])
def load_scipostlayout_data(raw_dir: str, max_num_elements: int,
label_set: Union[List, Set], label2index: Dict):
def is_valid(element):
label = coco.cats[element['category_id']]['name']
if label not in set(label_set):
return False
x1, y1, width, height = element['bbox']
x2, y2 = x1 + width, y1 + height
if x1 < 0 or y1 < 0 or W < x2 or H < y2:
return False
if x2 <= x1 or y2 <= y1:
return False
return True
train_list, dev_list = None, None
# raw_dir = osp.join(Path(raw_dir), 'scipostlayout')
for split in ['train', 'dev', 'test']:
dataset = []
coco = COCO(osp.join(raw_dir, f'{split}.json'))
for img_id in sorted(coco.getImgIds()):
ann_img = coco.loadImgs(img_id)
W = float(ann_img[0]['width'])
H = float(ann_img[0]['height'])
name = ann_img[0]['file_name']
# if H < W:
# continue
elements = coco.loadAnns(coco.getAnnIds(imgIds=[img_id]))
_elements = list(filter(is_valid, elements))
filtered = len(elements) != len(_elements)
elements = _elements
N = len(elements)
if N == 0 or max_num_elements < N:
continue
bboxes = []
labels = []
for element in elements:
# bbox
x1, y1, width, height = element['bbox']
b = [x1 / W, y1 / H, width / W, height / H] # bbox format: ltwh
bboxes.append(b)
# label
label = coco.cats[element['category_id']]['name']
labels.append(label2index[label])
bboxes = torch.tensor(bboxes, dtype=torch.float)
labels = torch.tensor(labels, dtype=torch.long)
data = {
'name': name,
'bboxes': bboxes,
'labels': labels,
'canvas_size': [W, H],
'filtered': filtered,
}
dataset.append(data)
if split == 'train':
train_list = dataset
elif split == 'dev':
dev_list = dataset
else:
test_list = dataset
# shuffle train with seed
generator = torch.Generator().manual_seed(0)
indices = torch.randperm(len(train_list), generator=generator)
train_list = [train_list[i] for i in indices]
train_set = train_list
dev_set = dev_list
test_set = test_list
split_dataset = [train_set, dev_set, test_set]
return split_dataset
class LayoutDataset(Dataset):
_label2index = None
_index2label = None
_colors = None
split_file_names = ['train.pt', 'dev.pt', 'test.pt']
def __init__(self,
root: str,
data_name: str,
split: str,
max_num_elements: int,
label_set: Union[List, Set],
online_process: bool = True):
self.root = f'{root}/{data_name}/'
self.raw_dir = osp.join(self.root, 'raw')
self.max_num_elements = max_num_elements
self.label_set = label_set
self.pre_processed_dir = osp.join(
self.root, 'pre_processed_{}_{}'.format(self.max_num_elements, len(self.label_set)))
assert split in ['train', 'dev', 'test']
if files_exist(self.pre_processed_paths):
idx = self.split_file_names.index('{}.pt'.format(split))
print(f'Loading {split}...')
self.data = torch.load(self.pre_processed_paths[idx])
else:
print(f'Pre-processing and loading {split}...')
makedirs(self.pre_processed_dir)
split_dataset = self.load_raw_data()
self.save_split_dataset(split_dataset)
idx = self.split_file_names.index('{}.pt'.format(split))
self.data = torch.load(self.pre_processed_paths[idx])
self.online_process = online_process
if not self.online_process:
self.data = [self.process(item) for item in self.data]
@property
def pre_processed_paths(self):
return [
osp.join(self.pre_processed_dir, f) for f in self.split_file_names
]
@classmethod
def label2index(self, label_set):
if self._label2index is None:
self._label2index = dict()
for idx, label in enumerate(label_set):
self._label2index[label] = idx # HACK idx + 1
return self._label2index
@classmethod
def index2label(self, label_set):
if self._index2label is None:
self._index2label = dict()
for idx, label in enumerate(label_set):
self._index2label[idx] = label # HACK idx + 1
return self._index2label
@property
def colors(self):
if self._colors is None:
n_colors = len(self.label_set) + 1
colors = sns.color_palette('husl', n_colors=n_colors)
self._colors = [
tuple(map(lambda x: int(x * 255), c)) for c in colors
]
return self._colors
def save_split_dataset(self, split_dataset):
torch.save(split_dataset[0], self.pre_processed_paths[0])
torch.save(split_dataset[1], self.pre_processed_paths[1])
torch.save(split_dataset[2], self.pre_processed_paths[2])
def load_raw_data(self) -> list:
raise NotImplementedError
def process(self, data) -> dict:
raise NotImplementedError
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
if self.online_process:
sample = self.process(self.data[idx])
else:
sample = self.data[idx]
return sample
class SciPostLayoutDataset(LayoutDataset):
labels = [
'Title',
'Author Info',
'Section',
'List',
'Text',
'Caption',
'Figure',
'Table',
'Unknown'
]
def __init__(self,
root: str,
split: str,
max_num_elements: int,
online_process: bool = True):
data_name = 'scipostlayout'
super().__init__(root,
data_name,
split,
max_num_elements,
label_set=self.labels,
online_process=online_process)
def load_raw_data(self) -> list:
return load_scipostlayout_data(self.raw_dir, self.max_num_elements,
self.label_set, self.label2index(self.label_set))
if __name__ == "__main__":
dataset = SciPostLayoutDataset(root="./", split="dev", max_num_elements=50)