|
import os |
|
import errno |
|
import os.path as osp |
|
from typing import List, Set, Union |
|
|
|
import json |
|
from pathlib import Path |
|
from typing import List, Set, Union, Dict |
|
|
|
import torch |
|
from torch.utils.data import Dataset |
|
import seaborn as sns |
|
from pycocotools.coco import COCO |
|
""" |
|
load raw data |
|
""" |
|
|
|
|
|
def makedirs(path): |
|
try: |
|
os.makedirs(osp.expanduser(osp.normpath(path))) |
|
except OSError as e: |
|
if e.errno != errno.EEXIST and osp.isdir(path): |
|
raise e |
|
|
|
|
|
def files_exist(files): |
|
return all([osp.exists(f) for f in files]) |
|
|
|
|
|
|
|
def load_scipostlayout_data(raw_dir: str, max_num_elements: int, |
|
label_set: Union[List, Set], label2index: Dict): |
|
|
|
def is_valid(element): |
|
label = coco.cats[element['category_id']]['name'] |
|
if label not in set(label_set): |
|
return False |
|
x1, y1, width, height = element['bbox'] |
|
x2, y2 = x1 + width, y1 + height |
|
|
|
if x1 < 0 or y1 < 0 or W < x2 or H < y2: |
|
return False |
|
if x2 <= x1 or y2 <= y1: |
|
return False |
|
|
|
return True |
|
|
|
train_list, dev_list = None, None |
|
|
|
for split in ['train', 'dev', 'test']: |
|
dataset = [] |
|
coco = COCO(osp.join(raw_dir, f'{split}.json')) |
|
for img_id in sorted(coco.getImgIds()): |
|
ann_img = coco.loadImgs(img_id) |
|
W = float(ann_img[0]['width']) |
|
H = float(ann_img[0]['height']) |
|
name = ann_img[0]['file_name'] |
|
|
|
|
|
|
|
elements = coco.loadAnns(coco.getAnnIds(imgIds=[img_id])) |
|
_elements = list(filter(is_valid, elements)) |
|
filtered = len(elements) != len(_elements) |
|
elements = _elements |
|
|
|
N = len(elements) |
|
if N == 0 or max_num_elements < N: |
|
continue |
|
|
|
bboxes = [] |
|
labels = [] |
|
|
|
for element in elements: |
|
|
|
x1, y1, width, height = element['bbox'] |
|
b = [x1 / W, y1 / H, width / W, height / H] |
|
bboxes.append(b) |
|
|
|
|
|
label = coco.cats[element['category_id']]['name'] |
|
labels.append(label2index[label]) |
|
|
|
bboxes = torch.tensor(bboxes, dtype=torch.float) |
|
labels = torch.tensor(labels, dtype=torch.long) |
|
|
|
data = { |
|
'name': name, |
|
'bboxes': bboxes, |
|
'labels': labels, |
|
'canvas_size': [W, H], |
|
'filtered': filtered, |
|
} |
|
dataset.append(data) |
|
|
|
if split == 'train': |
|
train_list = dataset |
|
elif split == 'dev': |
|
dev_list = dataset |
|
else: |
|
test_list = dataset |
|
|
|
|
|
generator = torch.Generator().manual_seed(0) |
|
indices = torch.randperm(len(train_list), generator=generator) |
|
train_list = [train_list[i] for i in indices] |
|
|
|
train_set = train_list |
|
dev_set = dev_list |
|
test_set = test_list |
|
split_dataset = [train_set, dev_set, test_set] |
|
return split_dataset |
|
|
|
|
|
class LayoutDataset(Dataset): |
|
|
|
_label2index = None |
|
_index2label = None |
|
_colors = None |
|
|
|
split_file_names = ['train.pt', 'dev.pt', 'test.pt'] |
|
|
|
def __init__(self, |
|
root: str, |
|
data_name: str, |
|
split: str, |
|
max_num_elements: int, |
|
label_set: Union[List, Set], |
|
online_process: bool = True): |
|
|
|
self.root = f'{root}/{data_name}/' |
|
self.raw_dir = osp.join(self.root, 'raw') |
|
self.max_num_elements = max_num_elements |
|
self.label_set = label_set |
|
self.pre_processed_dir = osp.join( |
|
self.root, 'pre_processed_{}_{}'.format(self.max_num_elements, len(self.label_set))) |
|
assert split in ['train', 'dev', 'test'] |
|
|
|
if files_exist(self.pre_processed_paths): |
|
idx = self.split_file_names.index('{}.pt'.format(split)) |
|
print(f'Loading {split}...') |
|
self.data = torch.load(self.pre_processed_paths[idx]) |
|
else: |
|
print(f'Pre-processing and loading {split}...') |
|
makedirs(self.pre_processed_dir) |
|
split_dataset = self.load_raw_data() |
|
self.save_split_dataset(split_dataset) |
|
idx = self.split_file_names.index('{}.pt'.format(split)) |
|
self.data = torch.load(self.pre_processed_paths[idx]) |
|
|
|
self.online_process = online_process |
|
if not self.online_process: |
|
self.data = [self.process(item) for item in self.data] |
|
|
|
@property |
|
def pre_processed_paths(self): |
|
return [ |
|
osp.join(self.pre_processed_dir, f) for f in self.split_file_names |
|
] |
|
|
|
@classmethod |
|
def label2index(self, label_set): |
|
if self._label2index is None: |
|
self._label2index = dict() |
|
for idx, label in enumerate(label_set): |
|
self._label2index[label] = idx |
|
return self._label2index |
|
|
|
@classmethod |
|
def index2label(self, label_set): |
|
if self._index2label is None: |
|
self._index2label = dict() |
|
for idx, label in enumerate(label_set): |
|
self._index2label[idx] = label |
|
return self._index2label |
|
|
|
@property |
|
def colors(self): |
|
if self._colors is None: |
|
n_colors = len(self.label_set) + 1 |
|
colors = sns.color_palette('husl', n_colors=n_colors) |
|
self._colors = [ |
|
tuple(map(lambda x: int(x * 255), c)) for c in colors |
|
] |
|
return self._colors |
|
|
|
def save_split_dataset(self, split_dataset): |
|
torch.save(split_dataset[0], self.pre_processed_paths[0]) |
|
torch.save(split_dataset[1], self.pre_processed_paths[1]) |
|
torch.save(split_dataset[2], self.pre_processed_paths[2]) |
|
|
|
def load_raw_data(self) -> list: |
|
raise NotImplementedError |
|
|
|
def process(self, data) -> dict: |
|
raise NotImplementedError |
|
|
|
def __len__(self): |
|
return len(self.data) |
|
|
|
def __getitem__(self, idx): |
|
if self.online_process: |
|
sample = self.process(self.data[idx]) |
|
else: |
|
sample = self.data[idx] |
|
return sample |
|
|
|
|
|
class SciPostLayoutDataset(LayoutDataset): |
|
labels = [ |
|
'Title', |
|
'Author Info', |
|
'Section', |
|
'List', |
|
'Text', |
|
'Caption', |
|
'Figure', |
|
'Table', |
|
'Unknown' |
|
] |
|
|
|
def __init__(self, |
|
root: str, |
|
split: str, |
|
max_num_elements: int, |
|
online_process: bool = True): |
|
data_name = 'scipostlayout' |
|
super().__init__(root, |
|
data_name, |
|
split, |
|
max_num_elements, |
|
label_set=self.labels, |
|
online_process=online_process) |
|
|
|
def load_raw_data(self) -> list: |
|
return load_scipostlayout_data(self.raw_dir, self.max_num_elements, |
|
self.label_set, self.label2index(self.label_set)) |
|
|
|
|
|
if __name__ == "__main__": |
|
dataset = SciPostLayoutDataset(root="./", split="dev", max_num_elements=50) |