Datasets:

Modalities:
Text
Formats:
json
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 1,595 Bytes
cef8013
 
2117d40
 
 
 
 
 
 
cef8013
a203d91
78a8583
a203d91
78a8583
 
 
c9db2d6
 
 
 
78a8583
 
08f657c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7156b2c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
---
license: apache-2.0
task_categories:
- summarization
language:
- en
pretty_name: PeerSum
size_categories:
- 10K<n<100K
---

This is PeerSum, a multi-document summarization dataset in the peer-review domain. More details can be found in the paper accepted at EMNLP 2023, [Summarizing Multiple Documents with Conversational Structure for Meta-review Generation](https://arxiv.org/abs/2305.01498). The original code and datasets are public on [GitHub](https://github.com/oaimli/PeerSum).

Please use the following code to download the dataset with the datasets library from Huggingface.
```python
from datasets import load_dataset
peersum_all = load_dataset('oaimli/PeerSum', split='all')
peersum_train = peersum_all.filter(lambda s: s['label'] == 'train')
peersum_val = peersum_all.filter(lambda s: s['label'] == 'val')
peersum_test = peersum_all.filter(lambda s: s['label'] == 'test')
```

The Huggingface dataset is mainly for multi-document summarization. Each sample comprises information with the following keys:
```
* paper_id: str (a link to the raw data)
* paper_title: str
* paper_abstract, str
* paper_acceptance, str
* meta_review, str
* review_ids, list(str)
* review_writers, list(str)
* review_contents, list(str)
* review_ratings, list(int)
* review_confidences, list(int)
* review_reply_tos, list(str)
* label, str, (train, val, test)
```

You can also download the raw data from [Google Drive](https://drive.google.com/drive/folders/1SGYvxY1vOZF2MpDn3B-apdWHCIfpN2uB?usp=sharing). The raw data comprises more information and it can be used for other analysis for peer reviews.