File size: 19,232 Bytes
bc1ecc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
import torch
import random
from tqdm.rich import tqdm

# ----------------------------------------------------------------------


import torch
import random
from typing import Optional
import PIL

from transformers import CLIPTokenizer
from diffusers.loaders import (
    StableDiffusionXLLoraLoaderMixin,
    TextualInversionLoaderMixin,
)
from diffusers.models.lora import adjust_lora_scale_text_encoder
from diffusers.utils import (
    USE_PEFT_BACKEND,
    logging,
    scale_lora_layers,
    unscale_lora_layers,
)
from diffusers.pipelines import StableDiffusionXLPipeline

logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

def parse_prompt_attention(text):
    """
    Parses a string with attention tokens and returns a list of pairs: text and its associated weight.
    Accepted tokens are:
      (abc) - increases attention to abc by a multiplier of 1.1
      (abc:3.12) - increases attention to abc by a multiplier of 3.12
      [abc] - decreases attention to abc by a multiplier of 1.1
      \\( - literal character '('
      \\[ - literal character '['
      \\) - literal character ')'
      \\] - literal character ']'
      \\ - literal character '\'
      anything else - just text

    >>> parse_prompt_attention('normal text')
    [['normal text', 1.0]]
    >>> parse_prompt_attention('an (important) word')
    [['an ', 1.0], ['important', 1.1], [' word', 1.0]]
    >>> parse_prompt_attention('(unbalanced')
    [['unbalanced', 1.1]]
    >>> parse_prompt_attention('\\(literal\\]')
    [['(literal]', 1.0]]
    >>> parse_prompt_attention('(unnecessary)(parens)')
    [['unnecessaryparens', 1.1]]
    >>> parse_prompt_attention('a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).')
    [['a ', 1.0],
     ['house', 1.5730000000000004],
     [' ', 1.1],
     ['on', 1.0],
     [' a ', 1.1],
     ['hill', 0.55],
     [', sun, ', 1.1],
     ['sky', 1.4641000000000006],
     ['.', 1.1]]
    """
    import re

    re_attention = re.compile(
        r"""
            \{|\}|\\\(|\\\)|\\\[|\\]|\\\\|\\|\(|\[|:([+-]?[.\d]+)\)|
            \)|]|[^\\()\[\]:]+|:
        """,
        re.X,
    )

    re_break = re.compile(r"\s*\bBREAK\b\s*", re.S)

    res = []
    round_brackets = []
    square_brackets = []
    curly_brackets = []
    round_bracket_multiplier = 1.05
    curly_bracket_multiplier = 1.05
    square_bracket_multiplier = 1 / 1.05

    def multiply_range(start_position, multiplier):
        for p in range(start_position, len(res)):
            res[p][1] *= multiplier

    for m in re_attention.finditer(text):
        text = m.group(0)
        weight = m.group(1)

        if text.startswith("\\"):
            res.append([text[1:], 1.0])
        elif text == "(":
            round_brackets.append(len(res))
        elif text == "{":
            curly_brackets.append(len(res))
        elif text == "[":
            square_brackets.append(len(res))
        elif weight is not None and len(round_brackets) > 0:
            multiply_range(round_brackets.pop(), float(weight))
        elif text == ")" and len(round_brackets) > 0:
            multiply_range(round_brackets.pop(), round_bracket_multiplier)
        elif text == "}" and len(round_brackets) > 0:
            multiply_range(curly_brackets.pop(), curly_bracket_multiplier)
        elif text == "]" and len(square_brackets) > 0:
            multiply_range(square_brackets.pop(), square_bracket_multiplier)
        else:
            parts = re.split(re_break, text)
            for i, part in enumerate(parts):
                if i > 0:
                    res.append(["BREAK", -1])
                res.append([part, 1.0])

    for pos in round_brackets:
        multiply_range(pos, round_bracket_multiplier)

    for pos in square_brackets:
        multiply_range(pos, square_bracket_multiplier)

    if len(res) == 0:
        res = [["", 1.0]]

    # merge runs of identical weights
    i = 0
    while i + 1 < len(res):
        if res[i][1] == res[i + 1][1]:
            res[i][0] += res[i + 1][0]
            res.pop(i + 1)
        else:
            i += 1

    return res


def get_prompts_tokens_with_weights(clip_tokenizer: CLIPTokenizer, prompt: str):
    """
    Get prompt token ids and weights, this function works for both prompt and negative prompt

    Args:
        pipe (CLIPTokenizer)
            A CLIPTokenizer
        prompt (str)
            A prompt string with weights

    Returns:
        text_tokens (list)
            A list contains token ids
        text_weight (list)
            A list contains the correspondent weight of token ids

    Example:
        import torch
        from transformers import CLIPTokenizer

        clip_tokenizer = CLIPTokenizer.from_pretrained(
            "stablediffusionapi/deliberate-v2"
            , subfolder = "tokenizer"
            , dtype = torch.float16
        )

        token_id_list, token_weight_list = get_prompts_tokens_with_weights(
            clip_tokenizer = clip_tokenizer
            ,prompt = "a (red:1.5) cat"*70
        )
    """
    texts_and_weights = parse_prompt_attention(prompt)
    text_tokens, text_weights = [], []
    for word, weight in texts_and_weights:
        # tokenize and discard the starting and the ending token
        token = clip_tokenizer(word, truncation=False).input_ids[1:-1]  # so that tokenize whatever length prompt
        # the returned token is a 1d list: [320, 1125, 539, 320]

        # merge the new tokens to the all tokens holder: text_tokens
        text_tokens = [*text_tokens, *token]

        # each token chunk will come with one weight, like ['red cat', 2.0]
        # need to expand weight for each token.
        chunk_weights = [weight] * len(token)

        # append the weight back to the weight holder: text_weights
        text_weights = [*text_weights, *chunk_weights]
    return text_tokens, text_weights


def group_tokens_and_weights(token_ids: list, weights: list, pad_last_block=False):
    """
    Produce tokens and weights in groups and pad the missing tokens

    Args:
        token_ids (list)
            The token ids from tokenizer
        weights (list)
            The weights list from function get_prompts_tokens_with_weights
        pad_last_block (bool)
            Control if fill the last token list to 75 tokens with eos
    Returns:
        new_token_ids (2d list)
        new_weights (2d list)

    Example:
        token_groups,weight_groups = group_tokens_and_weights(
            token_ids = token_id_list
            , weights = token_weight_list
        )
    """
    bos, eos = 49406, 49407

    # this will be a 2d list
    new_token_ids = []
    new_weights = []
    while len(token_ids) >= 75:
        # get the first 75 tokens
        head_75_tokens = [token_ids.pop(0) for _ in range(75)]
        head_75_weights = [weights.pop(0) for _ in range(75)]

        # extract token ids and weights
        temp_77_token_ids = [bos] + head_75_tokens + [eos]
        temp_77_weights = [1.0] + head_75_weights + [1.0]

        # add 77 token and weights chunk to the holder list
        new_token_ids.append(temp_77_token_ids)
        new_weights.append(temp_77_weights)

    # padding the left
    if len(token_ids) > 0:
        padding_len = 75 - len(token_ids) if pad_last_block else 0

        temp_77_token_ids = [bos] + token_ids + [eos] * padding_len + [eos]
        new_token_ids.append(temp_77_token_ids)

        temp_77_weights = [1.0] + weights + [1.0] * padding_len + [1.0]
        new_weights.append(temp_77_weights)

    return new_token_ids, new_weights


def get_weighted_text_embeddings_sdxl(
    pipe,
    prompt: str = "",
    prompt_2: str = None,
    neg_prompt: str = "",
    neg_prompt_2: str = None,
    num_images_per_prompt: int = 1,
    device: Optional[torch.device] = None,
    clip_skip: Optional[int] = None,
    lora_scale: Optional[int] = None,
):
    """
    This function can process long prompt with weights, no length limitation
    for Stable Diffusion XL

    Args:
        pipe (StableDiffusionPipeline)
        prompt (str)
        prompt_2 (str)
        neg_prompt (str)
        neg_prompt_2 (str)
        num_images_per_prompt (int)
        device (torch.device)
        clip_skip (int)
    Returns:
        prompt_embeds (torch.Tensor)
        neg_prompt_embeds (torch.Tensor)
    """
    device = device or pipe._execution_device

    # set lora scale so that monkey patched LoRA
    # function of text encoder can correctly access it
    if lora_scale is not None and isinstance(pipe, StableDiffusionXLLoraLoaderMixin):
        pipe._lora_scale = lora_scale

        # dynamically adjust the LoRA scale
        if pipe.text_encoder is not None:
            if not USE_PEFT_BACKEND:
                adjust_lora_scale_text_encoder(pipe.text_encoder, lora_scale)
            else:
                scale_lora_layers(pipe.text_encoder, lora_scale)

        if pipe.text_encoder_2 is not None:
            if not USE_PEFT_BACKEND:
                adjust_lora_scale_text_encoder(pipe.text_encoder_2, lora_scale)
            else:
                scale_lora_layers(pipe.text_encoder_2, lora_scale)

    if prompt_2:
        prompt = f"{prompt} {prompt_2}"

    if neg_prompt_2:
        neg_prompt = f"{neg_prompt} {neg_prompt_2}"

    prompt_t1 = prompt_t2 = prompt
    neg_prompt_t1 = neg_prompt_t2 = neg_prompt

    if isinstance(pipe, TextualInversionLoaderMixin):
        prompt_t1 = pipe.maybe_convert_prompt(prompt_t1, pipe.tokenizer)
        neg_prompt_t1 = pipe.maybe_convert_prompt(neg_prompt_t1, pipe.tokenizer)
        prompt_t2 = pipe.maybe_convert_prompt(prompt_t2, pipe.tokenizer_2)
        neg_prompt_t2 = pipe.maybe_convert_prompt(neg_prompt_t2, pipe.tokenizer_2)

    eos = pipe.tokenizer.eos_token_id

    # tokenizer 1
    prompt_tokens, prompt_weights = get_prompts_tokens_with_weights(pipe.tokenizer, prompt_t1)
    neg_prompt_tokens, neg_prompt_weights = get_prompts_tokens_with_weights(pipe.tokenizer, neg_prompt_t1)

    # tokenizer 2
    prompt_tokens_2, prompt_weights_2 = get_prompts_tokens_with_weights(pipe.tokenizer_2, prompt_t2)
    neg_prompt_tokens_2, neg_prompt_weights_2 = get_prompts_tokens_with_weights(pipe.tokenizer_2, neg_prompt_t2)

    # padding the shorter one for prompt set 1
    prompt_token_len = len(prompt_tokens)
    neg_prompt_token_len = len(neg_prompt_tokens)

    if prompt_token_len > neg_prompt_token_len:
        # padding the neg_prompt with eos token
        neg_prompt_tokens = neg_prompt_tokens + [eos] * abs(prompt_token_len - neg_prompt_token_len)
        neg_prompt_weights = neg_prompt_weights + [1.0] * abs(prompt_token_len - neg_prompt_token_len)
    else:
        # padding the prompt
        prompt_tokens = prompt_tokens + [eos] * abs(prompt_token_len - neg_prompt_token_len)
        prompt_weights = prompt_weights + [1.0] * abs(prompt_token_len - neg_prompt_token_len)

    # padding the shorter one for token set 2
    prompt_token_len_2 = len(prompt_tokens_2)
    neg_prompt_token_len_2 = len(neg_prompt_tokens_2)

    if prompt_token_len_2 > neg_prompt_token_len_2:
        # padding the neg_prompt with eos token
        neg_prompt_tokens_2 = neg_prompt_tokens_2 + [eos] * abs(prompt_token_len_2 - neg_prompt_token_len_2)
        neg_prompt_weights_2 = neg_prompt_weights_2 + [1.0] * abs(prompt_token_len_2 - neg_prompt_token_len_2)
    else:
        # padding the prompt
        prompt_tokens_2 = prompt_tokens_2 + [eos] * abs(prompt_token_len_2 - neg_prompt_token_len_2)
        prompt_weights_2 = prompt_weights + [1.0] * abs(prompt_token_len_2 - neg_prompt_token_len_2)

    embeds = []
    neg_embeds = []

    prompt_token_groups, prompt_weight_groups = group_tokens_and_weights(prompt_tokens.copy(), prompt_weights.copy())

    neg_prompt_token_groups, neg_prompt_weight_groups = group_tokens_and_weights(
        neg_prompt_tokens.copy(), neg_prompt_weights.copy()
    )

    prompt_token_groups_2, prompt_weight_groups_2 = group_tokens_and_weights(
        prompt_tokens_2.copy(), prompt_weights_2.copy()
    )

    neg_prompt_token_groups_2, neg_prompt_weight_groups_2 = group_tokens_and_weights(
        neg_prompt_tokens_2.copy(), neg_prompt_weights_2.copy()
    )

    # get prompt embeddings one by one is not working.
    for i in range(len(prompt_token_groups)):
        # get positive prompt embeddings with weights
        token_tensor = torch.tensor([prompt_token_groups[i]], dtype=torch.long, device=device)
        weight_tensor = torch.tensor(prompt_weight_groups[i], dtype=torch.float16, device=device)

        token_tensor_2 = torch.tensor([prompt_token_groups_2[i]], dtype=torch.long, device=device)

        # use first text encoder
        prompt_embeds_1 = pipe.text_encoder(token_tensor.to(device), output_hidden_states=True)

        # use second text encoder
        prompt_embeds_2 = pipe.text_encoder_2(token_tensor_2.to(device), output_hidden_states=True)
        pooled_prompt_embeds = prompt_embeds_2[0]

        if clip_skip is None:
            prompt_embeds_1_hidden_states = prompt_embeds_1.hidden_states[-2]
            prompt_embeds_2_hidden_states = prompt_embeds_2.hidden_states[-2]
        else:
            # "2" because SDXL always indexes from the penultimate layer.
            prompt_embeds_1_hidden_states = prompt_embeds_1.hidden_states[-(clip_skip + 2)]
            prompt_embeds_2_hidden_states = prompt_embeds_2.hidden_states[-(clip_skip + 2)]

        prompt_embeds_list = [prompt_embeds_1_hidden_states, prompt_embeds_2_hidden_states]
        token_embedding = torch.concat(prompt_embeds_list, dim=-1).squeeze(0)

        for j in range(len(weight_tensor)):
            if weight_tensor[j] != 1.0:
                token_embedding[j] = (
                    token_embedding[-1] + (token_embedding[j] - token_embedding[-1]) * weight_tensor[j]
                )

        token_embedding = token_embedding.unsqueeze(0)
        embeds.append(token_embedding)

        # get negative prompt embeddings with weights
        neg_token_tensor = torch.tensor([neg_prompt_token_groups[i]], dtype=torch.long, device=device)
        neg_token_tensor_2 = torch.tensor([neg_prompt_token_groups_2[i]], dtype=torch.long, device=device)
        neg_weight_tensor = torch.tensor(neg_prompt_weight_groups[i], dtype=torch.float16, device=device)

        # use first text encoder
        neg_prompt_embeds_1 = pipe.text_encoder(neg_token_tensor.to(device), output_hidden_states=True)
        neg_prompt_embeds_1_hidden_states = neg_prompt_embeds_1.hidden_states[-2]

        # use second text encoder
        neg_prompt_embeds_2 = pipe.text_encoder_2(neg_token_tensor_2.to(device), output_hidden_states=True)
        neg_prompt_embeds_2_hidden_states = neg_prompt_embeds_2.hidden_states[-2]
        negative_pooled_prompt_embeds = neg_prompt_embeds_2[0]

        neg_prompt_embeds_list = [neg_prompt_embeds_1_hidden_states, neg_prompt_embeds_2_hidden_states]
        neg_token_embedding = torch.concat(neg_prompt_embeds_list, dim=-1).squeeze(0)

        for z in range(len(neg_weight_tensor)):
            if neg_weight_tensor[z] != 1.0:
                neg_token_embedding[z] = (
                    neg_token_embedding[-1] + (neg_token_embedding[z] - neg_token_embedding[-1]) * neg_weight_tensor[z]
                )

        neg_token_embedding = neg_token_embedding.unsqueeze(0)
        neg_embeds.append(neg_token_embedding)

    prompt_embeds = torch.cat(embeds, dim=1)
    negative_prompt_embeds = torch.cat(neg_embeds, dim=1)

    bs_embed, seq_len, _ = prompt_embeds.shape
    # duplicate text embeddings for each generation per prompt, using mps friendly method
    prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
    prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)

    seq_len = negative_prompt_embeds.shape[1]
    negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
    negative_prompt_embeds = negative_prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)

    pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt, 1).view(
        bs_embed * num_images_per_prompt, -1
    )
    negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt, 1).view(
        bs_embed * num_images_per_prompt, -1
    )

    if pipe.text_encoder is not None:
        if isinstance(pipe, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
            # Retrieve the original scale by scaling back the LoRA layers
            unscale_lora_layers(pipe.text_encoder, lora_scale)

    if pipe.text_encoder_2 is not None:
        if isinstance(pipe, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
            # Retrieve the original scale by scaling back the LoRA layers
            unscale_lora_layers(pipe.text_encoder_2, lora_scale)

    return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
    
    
class ModText2ImgPipeline(StableDiffusionXLPipeline):
    
    def encode_prompt(self, prompt, num_images_per_prompt, negative_prompt, lora_scale, clip_skip, **kwags):
        return get_weighted_text_embeddings_sdxl(
            pipe=self,
            prompt=prompt,
            neg_prompt=negative_prompt,
            num_images_per_prompt=num_images_per_prompt,
            clip_skip=clip_skip,
            lora_scale=lora_scale,
        )

# ----------------------------------------------------------------------
      
pipe = ModText2ImgPipeline.from_pretrained(
    "yodayo-ai/clandestine-xl-1.0",
    torch_dtype=torch.float16
)
pipe.fuse_qkv_projections()
pipe.set_progress_bar_config(leave=False)
pipe.unet.to(memory_format=torch.channels_last)
pipe.vae.to(memory_format=torch.channels_last)
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)

device="cuda:1"
pipe = pipe.to(device)
PRESET_Q = "masterpiece, best quality, very aesthetic, absurdres"
NEGATIVE_PROMPT = "nsfw, (low quality, worst quality:1.2), very displeasing, 3d, watermark, signature, ugly, poorly drawn"

@torch.inference_mode
def generate(prompt, preset=PRESET_Q, h=1216, w=832, negative_prompt=NEGATIVE_PROMPT, guidance_scale=7.0, randomize_seed=True, seed=42):
    prompt = prompt.strip() + ", " + preset.strip()
    negative_prompt = negative_prompt.strip() if negative_prompt and negative_prompt.strip() else None
    
    print(f"Initial seed for prompt `{prompt}`", seed)
    if(randomize_seed):
        seed = random.randint(0, 9007199254740991)
    
    if not prompt and not negative_prompt:
        guidance_scale = 0.0
        
    generator = torch.Generator(device="cuda").manual_seed(seed)
    image = pipe(prompt, height=h, width=w, negative_prompt=negative_prompt, guidance_scale=guidance_scale, generator=generator, num_inference_steps=28).images
    return image

# read prompts for testing
with open("prompts.csv") as f:
    prompts = f.readlines()

# warmup
generate("")

# generate images
for i, prompt in tqdm(enumerate(prompts), total=len(prompts)):
    try:
        image = generate(prompt.strip())[0]
        fn = f"clandestine/{i+1}.webp"
        image.save(fn, "webp", quality=95)
    except Exception as e:
        print(f"Error at prompt {i+1}: {e}")
        continue