yonatanbitton
commited on
Commit
·
d1a7ad2
1
Parent(s):
4bfef74
Update beyond_web_scraping.py
Browse files- beyond_web_scraping.py +20 -11
beyond_web_scraping.py
CHANGED
@@ -19,9 +19,9 @@ import datasets
|
|
19 |
import json
|
20 |
from huggingface_hub import hf_hub_url
|
21 |
|
22 |
-
_INPUT_CSV = "
|
23 |
-
|
24 |
-
_REPO_ID = "nlphuji/
|
25 |
|
26 |
class Dataset(datasets.GeneratorBasedBuilder):
|
27 |
VERSION = datasets.Version("1.1.0")
|
@@ -34,12 +34,21 @@ class Dataset(datasets.GeneratorBasedBuilder):
|
|
34 |
features=datasets.Features(
|
35 |
{
|
36 |
"image": datasets.Image(),
|
37 |
-
"
|
38 |
-
"
|
39 |
-
"
|
40 |
-
"
|
41 |
-
"
|
42 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
}
|
44 |
),
|
45 |
task_templates=[],
|
@@ -51,7 +60,7 @@ class Dataset(datasets.GeneratorBasedBuilder):
|
|
51 |
repo_id = _REPO_ID
|
52 |
data_dir_125 = dl_manager.download_and_extract({
|
53 |
"examples_csv": hf_hub_url(repo_id=repo_id, repo_type='dataset', filename=_INPUT_CSV),
|
54 |
-
"images_dir": hf_hub_url(repo_id=repo_id, repo_type='dataset', filename=f"{
|
55 |
})
|
56 |
|
57 |
return [datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs=data_dir_125)]
|
@@ -63,6 +72,6 @@ class Dataset(datasets.GeneratorBasedBuilder):
|
|
63 |
|
64 |
for r_idx, r in df.iterrows():
|
65 |
r_dict = r.to_dict()
|
66 |
-
image_path = os.path.join(images_dir,
|
67 |
r_dict['image'] = image_path
|
68 |
yield r_idx, r_dict
|
|
|
19 |
import json
|
20 |
from huggingface_hub import hf_hub_url
|
21 |
|
22 |
+
_INPUT_CSV = "test_set.csv"
|
23 |
+
_INPUT_IMAGES = 'geode_test_images'
|
24 |
+
_REPO_ID = "nlphuji/beyond_web_scraping"
|
25 |
|
26 |
class Dataset(datasets.GeneratorBasedBuilder):
|
27 |
VERSION = datasets.Version("1.1.0")
|
|
|
34 |
features=datasets.Features(
|
35 |
{
|
36 |
"image": datasets.Image(),
|
37 |
+
"file_path": datasets.Value('string'),
|
38 |
+
"object": datasets.Value('string'),
|
39 |
+
"region": datasets.Value('string'),
|
40 |
+
"ip_country": datasets.Value('string'),
|
41 |
+
"date": datasets.Value('string'),
|
42 |
+
"make": datasets.Value('string'),
|
43 |
+
"make": datasets.Value('string'),
|
44 |
+
"model": datasets.Value('string'),
|
45 |
+
"gps_position": datasets.Value('string'),
|
46 |
+
"gps_altitude": datasets.Value('string'),
|
47 |
+
"resolution": datasets.Value('string'),
|
48 |
+
"licence_plate": datasets.Value('string'),
|
49 |
+
"people_in_background": datasets.Value('string'),
|
50 |
+
"tree_tag": datasets.Value('string'),
|
51 |
+
"short_file_path": datasets.Value('string'),
|
52 |
}
|
53 |
),
|
54 |
task_templates=[],
|
|
|
60 |
repo_id = _REPO_ID
|
61 |
data_dir_125 = dl_manager.download_and_extract({
|
62 |
"examples_csv": hf_hub_url(repo_id=repo_id, repo_type='dataset', filename=_INPUT_CSV),
|
63 |
+
"images_dir": hf_hub_url(repo_id=repo_id, repo_type='dataset', filename=f"{_INPUT_IMAGES}.zip")
|
64 |
})
|
65 |
|
66 |
return [datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs=data_dir_125)]
|
|
|
72 |
|
73 |
for r_idx, r in df.iterrows():
|
74 |
r_dict = r.to_dict()
|
75 |
+
image_path = os.path.join(images_dir, _INPUT_IMAGES, r_dict['file_path'])
|
76 |
r_dict['image'] = image_path
|
77 |
yield r_idx, r_dict
|