Datasets:

Modalities:
Text
Languages:
English
ArXiv:
Libraries:
Datasets
License:
File size: 9,571 Bytes
8bead32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da72192
 
68f2f94
681d85f
8bead32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75329c7
8bead32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
---
annotations_creators:
- expert-generated
language_creators:
- expert-generated
languages:
- en
licenses:
- cc-by-sa-4-0
multilinguality:
- monolingual
pretty_name: FiNER-139
size_categories:
- 1M<n<10M
source_datasets: []
task_categories:
- structure-prediction
- named-entity-recognition
- entity-extraction
task_ids:
- named-entity-recognition
---

[Needs More Information]

# Dataset Card for finer-139

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks](#supported-tasks)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-instances)
  - [Tag Names](#tag-names)
  - [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
- [SEC-BERT](#sec-bert)
- [About Us](#about-us)

## Dataset Description

- **Homepage:** [FiNER](https://github.com/nlpaueb/finer)
- **Repository:** [FiNER](https://github.com/nlpaueb/finer)
- **Paper:** [FiNER, Loukas et al. (2022)](https://arxiv.org/abs/2203.06482)
- **Point of Contact:** [Manos Fergadiotis](mailto:[email protected])

### Dataset Summary

**FiNER-139** is comprised of 1.1M sentences annotated with **eXtensive Business Reporting Language (XBRL)** tags extracted from annual and quarterly reports of publicly-traded companies in the US. 
Unlike other entity extraction tasks, like named entity recognition (NER) or contract element extraction, which typically require identifying entities of a small set of common types (e.g., persons, organizations), FiNER-139 uses a much larger label set of **139 entity types**. 
Another important difference from typical entity extraction is that FiNER focuses on numeric tokens, with the correct tag depending mostly on context, not the token itself.

### Supported Tasks

To promote transparency among shareholders and potential investors, publicly traded companies are required to file periodic financial reports annotated with tags from the eXtensive Business Reporting Language (XBRL), an XML-based language, to facilitate the processing of financial information. 
However, manually tagging reports with XBRL tags is tedious and resource-intensive. 
We, therefore, introduce **XBRL tagging** as a **new entity extraction task** for the **financial domain** and study how financial reports can be automatically enriched with XBRL tags. 
To facilitate research towards automated XBRL tagging we release FiNER-139.

### Languages

**FiNER-139** is compiled from approx. 10k annual and quarterly **English** reports

## Dataset Structure

### Data Instances

This is a "train" split example:

```json
{
	'id': 40
	'tokens': ['In', 'March', '2014', ',', 'the', 'Rialto', 'segment', 'issued', 'an', 'additional', '$', '100', 'million', 'of', 'the', '7.00', '%', 'Senior', 'Notes', ',', 'at', 'a', 'price', 'of', '102.25', '%', 'of', 'their', 'face', 'value', 'in', 'a', 'private', 'placement', '.']
	'ner_tags': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 37, 0, 0, 0, 41, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
}
```

### Data Fields

**id**: ID of the example <br>
**tokens**: list of tokens for the specific example <br>
**ner_tags**: list of tags for each token in the example <br>

### Tag Names

Tags are provided as integer classes. If you want to use the class names you can access them as follows:

```python
import datasets

finer_train = datasets.load_dataset("nlpaueb/finer-139", split="train")

finer_tag_names = finer_train.features["ner_tags"].feature.names
```

**finer_tag_names** contains a list of class names corresponding to the integer classes e.g.
```
0 -> "O" <br>
1 -> "B-AccrualForEnvironmentalLossContingencies" <br>
```

### Data Splits

| Training | Validation | Test
| -------- | ---------- | -------
| 900,384 | 112,494 | 108,378

## Dataset Creation

### Curation Rationale

The dataset was curated by [Loukas et al. (2022)](https://arxiv.org/abs/2203.06482) <br>

### Source Data

#### Initial Data Collection and Normalization

FiNER-139 is compiled from approx. 10k annual and quarterly English reports (filings) of publicly traded companies downloaded from the [US Securities
and Exchange Commission's (SEC)](https://www.sec.gov/) [Electronic Data Gathering, Analysis, and Retrieval (EDGAR)](https://www.sec.gov/edgar.shtml) system. <br>
The reports span a 5-year period, from 2016 to 2020. They are annotated with XBRL tags by professional auditors and describe the performance and projections of the companies. XBRL defines approx. 6k entity types from the US-GAAP taxonomy. FiNER-139 is annotated with the 139 most frequent XBRL entity types with at least 1,000 appearances. <br>
We used regular expressions to extract the text notes from the Financial Statements Item of each filing, which is the primary source of XBRL tags in annual and quarterly reports. We used the **IOB2** annotation scheme to distinguish tokens at the beginning, inside, or outside of tagged expressions, which leads to 279 possible token labels.

### Annotations

#### Annotation process

All the examples were annotated by professional auditors as required by the Securities & Exchange Commission (SEC) legislation. <br>
Even though the gold XBRL tags come from professional auditors there are still some discrepancies. [Loukas et al. (2022)](https://arxiv.org/abs/2203.06482), Section 9.4 Annotation inconsistencies for more details

#### Who are the annotators?

Professional auditors

### Personal and Sensitive Information

The dataset contains publicly available annual and quarterly reports (filings)

## Additional Information

### Dataset Curators

[Loukas et al. (2022)](https://arxiv.org/abs/2203.06482)

### Licensing Information

Access to SEC's EDGAR public database is free, allowing research of public companies' financial information and operations by reviewing the filings the companies makes with the SEC.

### Citation Information

FiNER: Financial Numeric Entity Recognition for XBRL Tagging <br>
Lefteris Loukas, Manos Fergadiotis, Ilias Chalkidis, Eirini Spyropoulou, Prodromos Malakasiotis, Ion Androutsopoulos and George Paliouras <br>
In the Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (ACL 2022) (Long Papers), Dublin, Republic of Ireland, May 22 - 27, 2022

```
@inproceedings{loukas-etal-2022-finer,
    title = {FiNER: Financial Numeric Entity Recognition for XBRL Tagging},
    author = {Loukas, Lefteris and
      Fergadiotis, Manos and
      Chalkidis, Ilias and
      Spyropoulou, Eirini and
      Malakasiotis, Prodromos and
      Androutsopoulos, Ion and
      Paliouras George},
    booktitle = {Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (ACL 2022)},
    publisher = {Association for Computational Linguistics},
    location = {Dublin, Republic of Ireland},
    year = {2022},
    url = {https://arxiv.org/abs/2203.06482}
}
```

## SEC-BERT
<img align="center" src="https://i.ibb.co/0yz81K9/sec-bert-logo.png" alt="SEC-BERT" width="400"/>

We also pre-train our own BERT models (**SEC-BERT**) for the financial domain, intended to assist financial NLP research and FinTech applications. <br>
**SEC-BERT** consists of the following models:

* [**SEC-BERT-BASE**](https://huggingface.co/nlpaueb/sec-bert-base): Same architecture as BERT-BASE trained on financial documents.
* [**SEC-BERT-NUM**](https://huggingface.co/nlpaueb/sec-bert-num): Same as SEC-BERT-BASE but we replace every number token with a [NUM] pseudo-token handling all numeric expressions in a uniform manner, disallowing their fragmentation
* [**SEC-BERT-SHAPE**](https://huggingface.co/nlpaueb/sec-bert-shape): Same as SEC-BERT-BASE but we replace numbers with pseudo-tokens that represent the number’s shape, so numeric expressions (of known shapes) are no longer fragmented, e.g., '53.2' becomes '[XX.X]' and '40,200.5' becomes '[XX,XXX.X]'.

These models were pre-trained on 260,773 10-K filings (annual reports) from 1993-2019, publicly available at [U.S. Securities and Exchange Commission (SEC)](https://www.sec.gov/)

## About Us

[AUEB's Natural Language Processing Group](http://nlp.cs.aueb.gr) develops algorithms, models, and systems that allow computers to process and generate natural language texts.

The group's current research interests include:
* question answering systems for databases, ontologies, document collections, and the Web, especially biomedical question answering,
* natural language generation from databases and ontologies, especially Semantic Web ontologies,
text classification, including filtering spam and abusive content,
* information extraction and opinion mining, including legal text analytics and sentiment analysis,
* natural language processing tools for Greek, for example parsers and named-entity recognizers,
machine learning in natural language processing, especially deep learning.

The group is part of the Information Processing Laboratory of the Department of Informatics of the Athens University of Economics and Business.

[Manos Fergadiotis](https://manosfer.github.io) on behalf of [AUEB's Natural Language Processing Group](http://nlp.cs.aueb.gr)