system HF staff commited on
Commit
1b9edb9
0 Parent(s):

Update files from the datasets library (from 1.0.0)

Browse files

Release notes: https://github.com/huggingface/datasets/releases/tag/1.0.0

.gitattributes ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
5
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.model filter=lfs diff=lfs merge=lfs -text
12
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
13
+ *.onnx filter=lfs diff=lfs merge=lfs -text
14
+ *.ot filter=lfs diff=lfs merge=lfs -text
15
+ *.parquet filter=lfs diff=lfs merge=lfs -text
16
+ *.pb filter=lfs diff=lfs merge=lfs -text
17
+ *.pt filter=lfs diff=lfs merge=lfs -text
18
+ *.pth filter=lfs diff=lfs merge=lfs -text
19
+ *.rar filter=lfs diff=lfs merge=lfs -text
20
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
22
+ *.tflite filter=lfs diff=lfs merge=lfs -text
23
+ *.tgz filter=lfs diff=lfs merge=lfs -text
24
+ *.xz filter=lfs diff=lfs merge=lfs -text
25
+ *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
biomrc.py ADDED
@@ -0,0 +1,200 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ # Lint as: python3
17
+ """BioMRC Dataset"""
18
+
19
+ from __future__ import absolute_import, division, print_function
20
+
21
+ import json
22
+ import logging
23
+
24
+ import datasets
25
+
26
+
27
+ _CITATION = """\
28
+ @inproceedings{pappas-etal-2020-biomrc,
29
+ title = "{B}io{MRC}: A Dataset for Biomedical Machine Reading Comprehension",
30
+ author = "Pappas, Dimitris and
31
+ Stavropoulos, Petros and
32
+ Androutsopoulos, Ion and
33
+ McDonald, Ryan",
34
+ booktitle = "Proceedings of the 19th SIGBioMed Workshop on Biomedical Language Processing",
35
+ month = jul,
36
+ year = "2020",
37
+ address = "Online",
38
+ publisher = "Association for Computational Linguistics",
39
+ url = "https://www.aclweb.org/anthology/2020.bionlp-1.15",
40
+ pages = "140--149",
41
+ abstract = "We introduce BIOMRC, a large-scale cloze-style biomedical MRC dataset. Care was taken to reduce noise, compared to the previous BIOREAD dataset of Pappas et al. (2018). Experiments show that simple heuristics do not perform well on the new dataset and that two neural MRC models that had been tested on BIOREAD perform much better on BIOMRC, indicating that the new dataset is indeed less noisy or at least that its task is more feasible. Non-expert human performance is also higher on the new dataset compared to BIOREAD, and biomedical experts perform even better. We also introduce a new BERT-based MRC model, the best version of which substantially outperforms all other methods tested, reaching or surpassing the accuracy of biomedical experts in some experiments. We make the new dataset available in three different sizes, also releasing our code, and providing a leaderboard.",
42
+ }
43
+ """
44
+
45
+ _DESCRIPTION = """\
46
+ We introduce BIOMRC, a large-scale cloze-style biomedical MRC dataset. Care was taken to reduce noise, compared to the previous BIOREAD dataset of Pappas et al. (2018). Experiments show that simple heuristics do not perform well on the new dataset and that two neural MRC models that had been tested on BIOREAD perform much better on BIOMRC, indicating that the new dataset is indeed less noisy or at least that its task is more feasible. Non-expert human performance is also higher on the new dataset compared to BIOREAD, and biomedical experts perform even better. We also introduce a new BERT-based MRC model, the best version of which substantially outperforms all other methods tested, reaching or surpassing the accuracy of biomedical experts in some experiments. We make the new dataset available in three different sizes, also releasing our code, and providing a leaderboard.
47
+ """
48
+
49
+
50
+ class BiomrcConfig(datasets.BuilderConfig):
51
+ """BuilderConfig for BioMRC."""
52
+
53
+ def __init__(self, biomrc_setting="A", biomrc_version="large", **kwargs):
54
+ """BuilderConfig for BioMRC.
55
+ Args:
56
+ **kwargs: keyword arguments forwarded to super.
57
+ """
58
+ if biomrc_setting.lower() == "b":
59
+ self.biomrc_setting = "B"
60
+ else:
61
+ if biomrc_setting.lower() != "a":
62
+ logging.warning("Wrong Setting for BioMRC, using Setting A instead.")
63
+ self.biomrc_setting = "A"
64
+
65
+ if biomrc_version.lower() == "small":
66
+ self.biomrc_version = "small"
67
+ elif biomrc_version.lower() == "tiny":
68
+ self.biomrc_version = "tiny"
69
+ else:
70
+ if biomrc_version.lower() != "large":
71
+ logging.warning("Wrong version for BioMRC, using BioMRC Large instead.")
72
+ self.biomrc_version = "large"
73
+
74
+ super(BiomrcConfig, self).__init__(**kwargs)
75
+
76
+
77
+ class Biomrc(datasets.GeneratorBasedBuilder):
78
+ """BioMRC Dataset"""
79
+
80
+ BUILDER_CONFIG_CLASS = BiomrcConfig
81
+
82
+ BUILDER_CONFIGS = [
83
+ BiomrcConfig(
84
+ name="biomrc_large_A",
85
+ version=datasets.Version("1.0.0", ""),
86
+ description="Biomrc Version Large Setting A",
87
+ biomrc_setting="A",
88
+ biomrc_version="large",
89
+ ),
90
+ BiomrcConfig(
91
+ name="biomrc_large_B",
92
+ version=datasets.Version("1.0.0", ""),
93
+ description="Biomrc Version Large Setting B",
94
+ biomrc_setting="B",
95
+ biomrc_version="large",
96
+ ),
97
+ BiomrcConfig(
98
+ name="biomrc_small_A",
99
+ version=datasets.Version("1.0.0", ""),
100
+ description="Biomrc Version Small Setting A",
101
+ biomrc_setting="A",
102
+ biomrc_version="small",
103
+ ),
104
+ BiomrcConfig(
105
+ name="biomrc_small_B",
106
+ version=datasets.Version("1.0.0", ""),
107
+ description="Biomrc Version Small Setting B",
108
+ biomrc_setting="B",
109
+ biomrc_version="small",
110
+ ),
111
+ BiomrcConfig(
112
+ name="biomrc_tiny_A",
113
+ version=datasets.Version("1.0.0", ""),
114
+ description="Biomrc Version Tiny Setting A",
115
+ biomrc_setting="A",
116
+ biomrc_version="tiny",
117
+ ),
118
+ BiomrcConfig(
119
+ name="biomrc_tiny_B",
120
+ version=datasets.Version("1.0.0", ""),
121
+ description="Biomrc Version Tiny Setting B",
122
+ biomrc_setting="B",
123
+ biomrc_version="tiny",
124
+ ),
125
+ ]
126
+
127
+ def _info(self):
128
+ return datasets.DatasetInfo(
129
+ description=_DESCRIPTION,
130
+ features=datasets.Features(
131
+ {
132
+ "abstract": datasets.Value("string"),
133
+ "title": datasets.Value("string"),
134
+ "entities_list": datasets.features.Sequence(datasets.Value("string")),
135
+ "answer": datasets.Value("string"),
136
+ }
137
+ ),
138
+ supervised_keys=None,
139
+ homepage="http://datasets.cs.aueb.gr/",
140
+ citation=_CITATION,
141
+ )
142
+
143
+ def _split_generators(self, dl_manager):
144
+ setting = "" if self.config.biomrc_setting == "A" else "_B"
145
+ if self.config.biomrc_version == "large":
146
+ urls_to_download = {
147
+ "train": "https://archive.org/download/biomrc_dataset/biomrc_large/dataset_train{}.json.gz".format(
148
+ setting
149
+ ),
150
+ "val": "https://archive.org/download/biomrc_dataset/biomrc_large/dataset_val{}.json.gz".format(
151
+ setting
152
+ ),
153
+ "test": "https://archive.org/download/biomrc_dataset/biomrc_large/dataset_test{}.json.gz".format(
154
+ setting
155
+ ),
156
+ }
157
+ elif self.config.biomrc_version == "small":
158
+ urls_to_download = {
159
+ "train": "https://archive.org/download/biomrc_dataset/biomrc_small/dataset_train_small{}.json.gz".format(
160
+ setting
161
+ ),
162
+ "val": "https://archive.org/download/biomrc_dataset/biomrc_small/dataset_val_small{}.json.gz".format(
163
+ setting
164
+ ),
165
+ "test": "https://archive.org/download/biomrc_dataset/biomrc_small/dataset_test_small{}.json.gz".format(
166
+ setting
167
+ ),
168
+ }
169
+ else:
170
+ urls_to_download = {
171
+ "test": "https://archive.org/download/biomrc_dataset/biomrc_tiny/dataset_tiny{}.json.gz".format(
172
+ setting
173
+ )
174
+ }
175
+
176
+ downloaded_files = dl_manager.download_and_extract(urls_to_download)
177
+
178
+ if self.config.biomrc_version == "tiny":
179
+ return [
180
+ datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
181
+ ]
182
+ else:
183
+ return [
184
+ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
185
+ datasets.SplitGenerator(
186
+ name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["val"]}
187
+ ),
188
+ datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
189
+ ]
190
+
191
+ def _generate_examples(self, filepath):
192
+ """This function returns the examples in the raw (text) form."""
193
+ logging.info("generating examples from = %s", filepath)
194
+ # Id for the biomrc dataset
195
+ with open(filepath, encoding="utf-8") as fp:
196
+ biomrc = json.load(fp)
197
+ for _id, (ab, ti, el, an) in enumerate(
198
+ zip(biomrc["abstracts"], biomrc["titles"], biomrc["entities_list"], biomrc["answers"])
199
+ ):
200
+ yield _id, {"abstract": ab, "title": ti, "entities_list": el, "answer": an}
dataset_infos.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"plain_text": {"description": "We introduce BIOMRC, a large-scale cloze-style biomedical MRC dataset. Care was taken to reduce noise, compared to the previous BIOREAD dataset of Pappas et al. (2018). Experiments show that simple heuristics do not perform well on the new dataset and that two neural MRC models that had been tested on BIOREAD perform much better on BIOMRC, indicating that the new dataset is indeed less noisy or at least that its task is more feasible. Non-expert human performance is also higher on the new dataset compared to BIOREAD, and biomedical experts perform even better. We also introduce a new BERT-based MRC model, the best version of which substantially outperforms all other methods tested, reaching or surpassing the accuracy of biomedical experts in some experiments. We make the new dataset available in three different sizes, also releasing our code, and providing a leaderboard.\n", "citation": "@inproceedings{pappas-etal-2020-biomrc,\n title = \"{B}io{MRC}: A Dataset for Biomedical Machine Reading Comprehension\",\n author = \"Pappas, Dimitris and\n Stavropoulos, Petros and\n Androutsopoulos, Ion and\n McDonald, Ryan\",\n booktitle = \"Proceedings of the 19th SIGBioMed Workshop on Biomedical Language Processing\",\n month = jul,\n year = \"2020\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.bionlp-1.15\",\n pages = \"140--149\",\n abstract = \"We introduce BIOMRC, a large-scale cloze-style biomedical MRC dataset. Care was taken to reduce noise, compared to the previous BIOREAD dataset of Pappas et al. (2018). Experiments show that simple heuristics do not perform well on the new dataset and that two neural MRC models that had been tested on BIOREAD perform much better on BIOMRC, indicating that the new dataset is indeed less noisy or at least that its task is more feasible. Non-expert human performance is also higher on the new dataset compared to BIOREAD, and biomedical experts perform even better. We also introduce a new BERT-based MRC model, the best version of which substantially outperforms all other methods tested, reaching or surpassing the accuracy of biomedical experts in some experiments. We make the new dataset available in three different sizes, also releasing our code, and providing a leaderboard.\",\n}\n", "homepage": "http://nlp.cs.aueb.gr/", "license": "", "features": {"abstract": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "entities_list": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "answer": {"dtype": "string", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "biomrc", "config_name": "plain_text", "version": {"version_str": "1.0.0", "description": "", "datasets_version_to_prepare": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1653301820, "num_examples": 700000, "dataset_name": "biomrc"}, "validation": {"name": "validation", "num_bytes": 119697683, "num_examples": 50000, "dataset_name": "biomrc"}, "test": {"name": "test", "num_bytes": 147832373, "num_examples": 62707, "dataset_name": "biomrc"}}, "download_checksums": {"https://archive.org/download/biomrc_dataset/biomrc_large/dataset_train.json.gz": {"num_bytes": 350959034, "checksum": "7a4adc939a91f16a501fc1c3e8cfa554e9d6ee4d9de69552bb907e6be9059d36"}, "https://archive.org/download/biomrc_dataset/biomrc_large/dataset_val.json.gz": {"num_bytes": 25539899, "checksum": "57d038b88d0409b17e659abfa6b8291b5449c21088c46c7eb1740582c5f3db42"}, "https://archive.org/download/biomrc_dataset/biomrc_large/dataset_test.json.gz": {"num_bytes": 31581423, "checksum": "1d156ac1b0a79768ef479427dc57a170d3a29efc0cd31bd4c21214de2e0f74a0"}}, "download_size": 408080356, "dataset_size": 1920831876, "size_in_bytes": 2328912232}, "biomrc_large_A": {"description": "We introduce BIOMRC, a large-scale cloze-style biomedical MRC dataset. Care was taken to reduce noise, compared to the previous BIOREAD dataset of Pappas et al. (2018). Experiments show that simple heuristics do not perform well on the new dataset and that two neural MRC models that had been tested on BIOREAD perform much better on BIOMRC, indicating that the new dataset is indeed less noisy or at least that its task is more feasible. Non-expert human performance is also higher on the new dataset compared to BIOREAD, and biomedical experts perform even better. We also introduce a new BERT-based MRC model, the best version of which substantially outperforms all other methods tested, reaching or surpassing the accuracy of biomedical experts in some experiments. We make the new dataset available in three different sizes, also releasing our code, and providing a leaderboard.\n", "citation": "@inproceedings{pappas-etal-2020-biomrc,\n title = \"{B}io{MRC}: A Dataset for Biomedical Machine Reading Comprehension\",\n author = \"Pappas, Dimitris and\n Stavropoulos, Petros and\n Androutsopoulos, Ion and\n McDonald, Ryan\",\n booktitle = \"Proceedings of the 19th SIGBioMed Workshop on Biomedical Language Processing\",\n month = jul,\n year = \"2020\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.bionlp-1.15\",\n pages = \"140--149\",\n abstract = \"We introduce BIOMRC, a large-scale cloze-style biomedical MRC dataset. Care was taken to reduce noise, compared to the previous BIOREAD dataset of Pappas et al. (2018). Experiments show that simple heuristics do not perform well on the new dataset and that two neural MRC models that had been tested on BIOREAD perform much better on BIOMRC, indicating that the new dataset is indeed less noisy or at least that its task is more feasible. Non-expert human performance is also higher on the new dataset compared to BIOREAD, and biomedical experts perform even better. We also introduce a new BERT-based MRC model, the best version of which substantially outperforms all other methods tested, reaching or surpassing the accuracy of biomedical experts in some experiments. We make the new dataset available in three different sizes, also releasing our code, and providing a leaderboard.\",\n}\n", "homepage": "http://nlp.cs.aueb.gr/", "license": "", "features": {"abstract": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "entities_list": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "answer": {"dtype": "string", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "biomrc", "config_name": "biomrc_large_A", "version": {"version_str": "1.0.0", "description": "", "datasets_version_to_prepare": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1653301820, "num_examples": 700000, "dataset_name": "biomrc"}, "validation": {"name": "validation", "num_bytes": 119697683, "num_examples": 50000, "dataset_name": "biomrc"}, "test": {"name": "test", "num_bytes": 147832373, "num_examples": 62707, "dataset_name": "biomrc"}}, "download_checksums": {"https://archive.org/download/biomrc_dataset/biomrc_large/dataset_train.json.gz": {"num_bytes": 350959034, "checksum": "7a4adc939a91f16a501fc1c3e8cfa554e9d6ee4d9de69552bb907e6be9059d36"}, "https://archive.org/download/biomrc_dataset/biomrc_large/dataset_val.json.gz": {"num_bytes": 25539899, "checksum": "57d038b88d0409b17e659abfa6b8291b5449c21088c46c7eb1740582c5f3db42"}, "https://archive.org/download/biomrc_dataset/biomrc_large/dataset_test.json.gz": {"num_bytes": 31581423, "checksum": "1d156ac1b0a79768ef479427dc57a170d3a29efc0cd31bd4c21214de2e0f74a0"}}, "download_size": 408080356, "dataset_size": 1920831876, "size_in_bytes": 2328912232}, "biomrc_large_B": {"description": "We introduce BIOMRC, a large-scale cloze-style biomedical MRC dataset. Care was taken to reduce noise, compared to the previous BIOREAD dataset of Pappas et al. (2018). Experiments show that simple heuristics do not perform well on the new dataset and that two neural MRC models that had been tested on BIOREAD perform much better on BIOMRC, indicating that the new dataset is indeed less noisy or at least that its task is more feasible. Non-expert human performance is also higher on the new dataset compared to BIOREAD, and biomedical experts perform even better. We also introduce a new BERT-based MRC model, the best version of which substantially outperforms all other methods tested, reaching or surpassing the accuracy of biomedical experts in some experiments. We make the new dataset available in three different sizes, also releasing our code, and providing a leaderboard.\n", "citation": "@inproceedings{pappas-etal-2020-biomrc,\n title = \"{B}io{MRC}: A Dataset for Biomedical Machine Reading Comprehension\",\n author = \"Pappas, Dimitris and\n Stavropoulos, Petros and\n Androutsopoulos, Ion and\n McDonald, Ryan\",\n booktitle = \"Proceedings of the 19th SIGBioMed Workshop on Biomedical Language Processing\",\n month = jul,\n year = \"2020\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.bionlp-1.15\",\n pages = \"140--149\",\n abstract = \"We introduce BIOMRC, a large-scale cloze-style biomedical MRC dataset. Care was taken to reduce noise, compared to the previous BIOREAD dataset of Pappas et al. (2018). Experiments show that simple heuristics do not perform well on the new dataset and that two neural MRC models that had been tested on BIOREAD perform much better on BIOMRC, indicating that the new dataset is indeed less noisy or at least that its task is more feasible. Non-expert human performance is also higher on the new dataset compared to BIOREAD, and biomedical experts perform even better. We also introduce a new BERT-based MRC model, the best version of which substantially outperforms all other methods tested, reaching or surpassing the accuracy of biomedical experts in some experiments. We make the new dataset available in three different sizes, also releasing our code, and providing a leaderboard.\",\n}\n", "homepage": "http://nlp.cs.aueb.gr/", "license": "", "features": {"abstract": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "entities_list": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "answer": {"dtype": "string", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "biomrc", "config_name": "biomrc_large_B", "version": {"version_str": "1.0.0", "description": "", "datasets_version_to_prepare": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1325877001, "num_examples": 700000, "dataset_name": "biomrc"}, "validation": {"name": "validation", "num_bytes": 96414040, "num_examples": 50000, "dataset_name": "biomrc"}, "test": {"name": "test", "num_bytes": 118708586, "num_examples": 62707, "dataset_name": "biomrc"}}, "download_checksums": {"https://archive.org/download/biomrc_dataset/biomrc_large/dataset_train_B.json.gz": {"num_bytes": 294999344, "checksum": "9f692c59b511fd58a466d1aa62c3fe5b07cb747d55f89744fde42170136a94b8"}, "https://archive.org/download/biomrc_dataset/biomrc_large/dataset_val_B.json.gz": {"num_bytes": 21530707, "checksum": "3933a7ad0d44e26891fa40b449f917680a132440dea564d0fbf3ca1f3731a7b2"}, "https://archive.org/download/biomrc_dataset/biomrc_large/dataset_test_B.json.gz": {"num_bytes": 26531488, "checksum": "87ad50abc8c71e946eec70d0805b92ed5614e97d6f80c4740328f087349955df"}}, "download_size": 343061539, "dataset_size": 1540999627, "size_in_bytes": 1884061166}, "biomrc_small_A": {"description": "We introduce BIOMRC, a large-scale cloze-style biomedical MRC dataset. Care was taken to reduce noise, compared to the previous BIOREAD dataset of Pappas et al. (2018). Experiments show that simple heuristics do not perform well on the new dataset and that two neural MRC models that had been tested on BIOREAD perform much better on BIOMRC, indicating that the new dataset is indeed less noisy or at least that its task is more feasible. Non-expert human performance is also higher on the new dataset compared to BIOREAD, and biomedical experts perform even better. We also introduce a new BERT-based MRC model, the best version of which substantially outperforms all other methods tested, reaching or surpassing the accuracy of biomedical experts in some experiments. We make the new dataset available in three different sizes, also releasing our code, and providing a leaderboard.\n", "citation": "@inproceedings{pappas-etal-2020-biomrc,\n title = \"{B}io{MRC}: A Dataset for Biomedical Machine Reading Comprehension\",\n author = \"Pappas, Dimitris and\n Stavropoulos, Petros and\n Androutsopoulos, Ion and\n McDonald, Ryan\",\n booktitle = \"Proceedings of the 19th SIGBioMed Workshop on Biomedical Language Processing\",\n month = jul,\n year = \"2020\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.bionlp-1.15\",\n pages = \"140--149\",\n abstract = \"We introduce BIOMRC, a large-scale cloze-style biomedical MRC dataset. Care was taken to reduce noise, compared to the previous BIOREAD dataset of Pappas et al. (2018). Experiments show that simple heuristics do not perform well on the new dataset and that two neural MRC models that had been tested on BIOREAD perform much better on BIOMRC, indicating that the new dataset is indeed less noisy or at least that its task is more feasible. Non-expert human performance is also higher on the new dataset compared to BIOREAD, and biomedical experts perform even better. We also introduce a new BERT-based MRC model, the best version of which substantially outperforms all other methods tested, reaching or surpassing the accuracy of biomedical experts in some experiments. We make the new dataset available in three different sizes, also releasing our code, and providing a leaderboard.\",\n}\n", "homepage": "http://nlp.cs.aueb.gr/", "license": "", "features": {"abstract": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "entities_list": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "answer": {"dtype": "string", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "biomrc", "config_name": "biomrc_small_A", "version": {"version_str": "1.0.0", "description": "", "datasets_version_to_prepare": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 206553549, "num_examples": 87500, "dataset_name": "biomrc"}, "validation": {"name": "validation", "num_bytes": 14957163, "num_examples": 6250, "dataset_name": "biomrc"}, "test": {"name": "test", "num_bytes": 14807799, "num_examples": 6250, "dataset_name": "biomrc"}}, "download_checksums": {"https://archive.org/download/biomrc_dataset/biomrc_small/dataset_train_small.json.gz": {"num_bytes": 60171602, "checksum": "3cb9815b1288f9c43953ddd6a579b470f11362cbc61d0ce87711fcae94d9054d"}, "https://archive.org/download/biomrc_dataset/biomrc_small/dataset_val_small.json.gz": {"num_bytes": 4373594, "checksum": "6997fa36cf0a73ecf4a7ab72d0efc29a01881726418abbb1eb64d86e1dc57df2"}, "https://archive.org/download/biomrc_dataset/biomrc_small/dataset_test_small.json.gz": {"num_bytes": 4334078, "checksum": "5b77e00a1204c3b2deed403b84639d1e93145d3bc5680355ab1461521c155e20"}}, "download_size": 68879274, "dataset_size": 236318511, "size_in_bytes": 305197785}, "biomrc_small_B": {"description": "We introduce BIOMRC, a large-scale cloze-style biomedical MRC dataset. Care was taken to reduce noise, compared to the previous BIOREAD dataset of Pappas et al. (2018). Experiments show that simple heuristics do not perform well on the new dataset and that two neural MRC models that had been tested on BIOREAD perform much better on BIOMRC, indicating that the new dataset is indeed less noisy or at least that its task is more feasible. Non-expert human performance is also higher on the new dataset compared to BIOREAD, and biomedical experts perform even better. We also introduce a new BERT-based MRC model, the best version of which substantially outperforms all other methods tested, reaching or surpassing the accuracy of biomedical experts in some experiments. We make the new dataset available in three different sizes, also releasing our code, and providing a leaderboard.\n", "citation": "@inproceedings{pappas-etal-2020-biomrc,\n title = \"{B}io{MRC}: A Dataset for Biomedical Machine Reading Comprehension\",\n author = \"Pappas, Dimitris and\n Stavropoulos, Petros and\n Androutsopoulos, Ion and\n McDonald, Ryan\",\n booktitle = \"Proceedings of the 19th SIGBioMed Workshop on Biomedical Language Processing\",\n month = jul,\n year = \"2020\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.bionlp-1.15\",\n pages = \"140--149\",\n abstract = \"We introduce BIOMRC, a large-scale cloze-style biomedical MRC dataset. Care was taken to reduce noise, compared to the previous BIOREAD dataset of Pappas et al. (2018). Experiments show that simple heuristics do not perform well on the new dataset and that two neural MRC models that had been tested on BIOREAD perform much better on BIOMRC, indicating that the new dataset is indeed less noisy or at least that its task is more feasible. Non-expert human performance is also higher on the new dataset compared to BIOREAD, and biomedical experts perform even better. We also introduce a new BERT-based MRC model, the best version of which substantially outperforms all other methods tested, reaching or surpassing the accuracy of biomedical experts in some experiments. We make the new dataset available in three different sizes, also releasing our code, and providing a leaderboard.\",\n}\n", "homepage": "http://nlp.cs.aueb.gr/", "license": "", "features": {"abstract": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "entities_list": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "answer": {"dtype": "string", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "biomrc", "config_name": "biomrc_small_B", "version": {"version_str": "1.0.0", "description": "", "datasets_version_to_prepare": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 165662937, "num_examples": 87500, "dataset_name": "biomrc"}, "validation": {"name": "validation", "num_bytes": 12047304, "num_examples": 6250, "dataset_name": "biomrc"}, "test": {"name": "test", "num_bytes": 11911172, "num_examples": 6250, "dataset_name": "biomrc"}}, "download_checksums": {"https://archive.org/download/biomrc_dataset/biomrc_small/dataset_train_small_B.json.gz": {"num_bytes": 50392944, "checksum": "3704054bad89857139c85ad7cf4fc5450dd204ea8eeec30661a43062610c06c8"}, "https://archive.org/download/biomrc_dataset/biomrc_small/dataset_val_small_B.json.gz": {"num_bytes": 3676035, "checksum": "33aa4341eafb3345c4207ba60dcab53fb58711172eaedeb46eeaa974eaa75c60"}, "https://archive.org/download/biomrc_dataset/biomrc_small/dataset_test_small_B.json.gz": {"num_bytes": 3637910, "checksum": "98194d3f4c4d2559962a760934fe047c476705c33239123ac28808126d572936"}}, "download_size": 57706889, "dataset_size": 189621413, "size_in_bytes": 247328302}, "biomrc_tiny_A": {"description": "We introduce BIOMRC, a large-scale cloze-style biomedical MRC dataset. Care was taken to reduce noise, compared to the previous BIOREAD dataset of Pappas et al. (2018). Experiments show that simple heuristics do not perform well on the new dataset and that two neural MRC models that had been tested on BIOREAD perform much better on BIOMRC, indicating that the new dataset is indeed less noisy or at least that its task is more feasible. Non-expert human performance is also higher on the new dataset compared to BIOREAD, and biomedical experts perform even better. We also introduce a new BERT-based MRC model, the best version of which substantially outperforms all other methods tested, reaching or surpassing the accuracy of biomedical experts in some experiments. We make the new dataset available in three different sizes, also releasing our code, and providing a leaderboard.\n", "citation": "@inproceedings{pappas-etal-2020-biomrc,\n title = \"{B}io{MRC}: A Dataset for Biomedical Machine Reading Comprehension\",\n author = \"Pappas, Dimitris and\n Stavropoulos, Petros and\n Androutsopoulos, Ion and\n McDonald, Ryan\",\n booktitle = \"Proceedings of the 19th SIGBioMed Workshop on Biomedical Language Processing\",\n month = jul,\n year = \"2020\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.bionlp-1.15\",\n pages = \"140--149\",\n abstract = \"We introduce BIOMRC, a large-scale cloze-style biomedical MRC dataset. Care was taken to reduce noise, compared to the previous BIOREAD dataset of Pappas et al. (2018). Experiments show that simple heuristics do not perform well on the new dataset and that two neural MRC models that had been tested on BIOREAD perform much better on BIOMRC, indicating that the new dataset is indeed less noisy or at least that its task is more feasible. Non-expert human performance is also higher on the new dataset compared to BIOREAD, and biomedical experts perform even better. We also introduce a new BERT-based MRC model, the best version of which substantially outperforms all other methods tested, reaching or surpassing the accuracy of biomedical experts in some experiments. We make the new dataset available in three different sizes, also releasing our code, and providing a leaderboard.\",\n}\n", "homepage": "http://nlp.cs.aueb.gr/", "license": "", "features": {"abstract": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "entities_list": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "answer": {"dtype": "string", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "biomrc", "config_name": "biomrc_tiny_A", "version": {"version_str": "1.0.0", "description": "", "datasets_version_to_prepare": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 70914, "num_examples": 30, "dataset_name": "biomrc"}}, "download_checksums": {"https://archive.org/download/biomrc_dataset/biomrc_tiny/dataset_tiny.json.gz": {"num_bytes": 22519, "checksum": "533558dfa2de32d83aea22d69d56bc2a6760c56c91c9db9039f4bba8ac0c11af"}}, "download_size": 22519, "dataset_size": 70914, "size_in_bytes": 93433}, "biomrc_tiny_B": {"description": "We introduce BIOMRC, a large-scale cloze-style biomedical MRC dataset. Care was taken to reduce noise, compared to the previous BIOREAD dataset of Pappas et al. (2018). Experiments show that simple heuristics do not perform well on the new dataset and that two neural MRC models that had been tested on BIOREAD perform much better on BIOMRC, indicating that the new dataset is indeed less noisy or at least that its task is more feasible. Non-expert human performance is also higher on the new dataset compared to BIOREAD, and biomedical experts perform even better. We also introduce a new BERT-based MRC model, the best version of which substantially outperforms all other methods tested, reaching or surpassing the accuracy of biomedical experts in some experiments. We make the new dataset available in three different sizes, also releasing our code, and providing a leaderboard.\n", "citation": "@inproceedings{pappas-etal-2020-biomrc,\n title = \"{B}io{MRC}: A Dataset for Biomedical Machine Reading Comprehension\",\n author = \"Pappas, Dimitris and\n Stavropoulos, Petros and\n Androutsopoulos, Ion and\n McDonald, Ryan\",\n booktitle = \"Proceedings of the 19th SIGBioMed Workshop on Biomedical Language Processing\",\n month = jul,\n year = \"2020\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.bionlp-1.15\",\n pages = \"140--149\",\n abstract = \"We introduce BIOMRC, a large-scale cloze-style biomedical MRC dataset. Care was taken to reduce noise, compared to the previous BIOREAD dataset of Pappas et al. (2018). Experiments show that simple heuristics do not perform well on the new dataset and that two neural MRC models that had been tested on BIOREAD perform much better on BIOMRC, indicating that the new dataset is indeed less noisy or at least that its task is more feasible. Non-expert human performance is also higher on the new dataset compared to BIOREAD, and biomedical experts perform even better. We also introduce a new BERT-based MRC model, the best version of which substantially outperforms all other methods tested, reaching or surpassing the accuracy of biomedical experts in some experiments. We make the new dataset available in three different sizes, also releasing our code, and providing a leaderboard.\",\n}\n", "homepage": "http://nlp.cs.aueb.gr/", "license": "", "features": {"abstract": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "entities_list": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "answer": {"dtype": "string", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "biomrc", "config_name": "biomrc_tiny_B", "version": {"version_str": "1.0.0", "description": "", "datasets_version_to_prepare": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 59925, "num_examples": 30, "dataset_name": "biomrc"}}, "download_checksums": {"https://archive.org/download/biomrc_dataset/biomrc_tiny/dataset_tiny_B.json.gz": {"num_bytes": 19685, "checksum": "c547b812f327bc3760864bb9e8e873f94b18e230454428f4d6df4818fdfb3e6b"}}, "download_size": 19685, "dataset_size": 59925, "size_in_bytes": 79610}}
dummy/biomrc_large_A/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ee0c002b9609b171c98030d60964f7f4287892f8b9e38e9ba0ab346888393fc9
3
+ size 19371
dummy/biomrc_large_B/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2c40456b0145a9b916ac9ae44099ed3f929b4e2bc29e30e941c7d3cf7685163a
3
+ size 16443
dummy/biomrc_small_A/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:19326aba2160d1dd68cb76d83f02f06045da49278a7c875af02a43db692ab61e
3
+ size 27072
dummy/biomrc_small_B/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b988001fbcf6b4e3d1a08e3695cc7e00188cd327fec46c5a20998ddd5528c063
3
+ size 22098
dummy/biomrc_tiny_A/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b4d491730165c86d7f28479f3166c4e2d27ae459323fa767e28e3b1a95692356
3
+ size 8385
dummy/biomrc_tiny_B/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2c9bd242b85c4447e55c6d4e4003c4418e4c55e427de48fd345ca6f002d625b1
3
+ size 7447