File size: 12,314 Bytes
275e662
fce7ffb
64283f1
a3c7501
6c6b377
275e662
 
 
 
 
 
 
a3c7501
275e662
 
 
 
a3c7501
275e662
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1d1005
275e662
 
 
 
 
 
 
 
 
d1d1005
275e662
 
 
a3c7501
275e662
 
 
d1d1005
275e662
 
 
d1d1005
275e662
d1d1005
275e662
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1d1005
275e662
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3c7501
275e662
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1d1005
275e662
d1d1005
275e662
 
 
d1d1005
275e662
a3c7501
 
 
 
 
 
275e662
 
d1d1005
275e662
a3c7501
 
 
 
 
 
275e662
 
d1d1005
275e662
 
 
d1d1005
275e662
d1d1005
275e662
 
 
d1d1005
275e662
 
 
d1d1005
275e662
 
 
d1d1005
275e662
d1d1005
275e662
 
 
d1d1005
275e662
 
 
d1d1005
275e662
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c6b377
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
---
language:
- en
paperswithcode_id: biomrc
pretty_name: BIOMRC
---

# Dataset Card for "biomrc"

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [http://nlp.cs.aueb.gr/](http://nlp.cs.aueb.gr/)
- **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Size of downloaded dataset files:** 1226.28 MB
- **Size of the generated dataset:** 5539.64 MB
- **Total amount of disk used:** 6765.92 MB

### Dataset Summary

We introduce BIOMRC, a large-scale cloze-style biomedical MRC dataset. Care was taken to reduce noise, compared to the previous BIOREAD dataset of Pappas et al. (2018). Experiments show that simple heuristics do not perform well on the new dataset and that two neural MRC models that had been tested on BIOREAD perform much better on BIOMRC, indicating that the new dataset is indeed less noisy or at least that its task is more feasible. Non-expert human performance is also higher on the new dataset compared to BIOREAD, and biomedical experts perform even better. We also introduce a new BERT-based MRC model, the best version of which substantially outperforms all other methods tested, reaching or surpassing the accuracy of biomedical experts in some experiments. We make the new dataset available in three different sizes, also releasing our code, and providing a leaderboard.

### Supported Tasks and Leaderboards

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Languages

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

## Dataset Structure

### Data Instances

#### biomrc_large_A

- **Size of downloaded dataset files:** 389.18 MB
- **Size of the generated dataset:** 1831.85 MB
- **Total amount of disk used:** 2221.02 MB

An example of 'train' looks as follows.
```
This example was too long and was cropped:

{
    "abstract": "\"OBJECTIVES: @entity9 is a @entity10 that may result from greater occipital nerve entrapment. Entrapped peripheral nerves typica...",
    "answer": "@entity9 :: (MESH:D009437,Disease) :: ['unilateral occipital neuralgia']\n",
    "entities_list": ["@entity1 :: ('9606', 'Species') :: ['patients']", "@entity10 :: ('MESH:D006261', 'Disease') :: ['headache', 'Headache']", "@entity9 :: ('MESH:D009437', 'Disease') :: ['Occipital neuralgia', 'unilateral occipital neuralgia']"],
    "title": "Sonographic evaluation of the greater occipital nerve in XXXX .\n"
}
```

#### biomrc_large_B

- **Size of downloaded dataset files:** 327.17 MB
- **Size of the generated dataset:** 1469.61 MB
- **Total amount of disk used:** 1796.78 MB

An example of 'train' looks as follows.
```
This example was too long and was cropped:

{
    "abstract": "\"BACKGROUND: Adults with physical disabilities are less likely than others to receive @entity2 screening. It is not known, howev...",
    "answer": "@entity2",
    "entities_list": ["@entity2", "@entity1", "@entity0", "@entity3"],
    "title": "Does a standard measure of self-reported physical disability correlate with clinician perception of impairment related to XXXX screening?\n"
}
```

#### biomrc_small_A

- **Size of downloaded dataset files:** 65.69 MB
- **Size of the generated dataset:** 225.37 MB
- **Total amount of disk used:** 291.06 MB

An example of 'validation' looks as follows.
```
This example was too long and was cropped:

{
    "abstract": "\"PURPOSE: @entity120 ( @entity120 ) is a life-limiting @entity102 that presents as an elevated blood pressure in the pulmonary a...",
    "answer": "@entity148 :: (MESH:D001008,Disease) :: ['anxiety']\n",
    "entities_list": "[\"@entity1 :: ('9606', 'Species') :: ['patients']\", \"@entity308 :: ('MESH:D003866', 'Disease') :: ['depression']\", \"@entity146 :...",
    "title": "A predictive model of the effects of @entity308 , XXXX , stress, 6-minute-walk distance, and social support on health-related quality of life in an adult pulmonary hypertension population.\n"
}
```

#### biomrc_small_B

- **Size of downloaded dataset files:** 55.03 MB
- **Size of the generated dataset:** 180.84 MB
- **Total amount of disk used:** 235.87 MB

An example of 'train' looks as follows.
```
This example was too long and was cropped:

{
    "abstract": "\"Single-agent activity for @entity12 reflected by response rates of 10%-30% has been reported in @entity0 with @entity3 ( @entit...",
    "answer": "@entity10",
    "entities_list": ["@entity0", "@entity6", "@entity2", "@entity5", "@entity12", "@entity11", "@entity1", "@entity7", "@entity9", "@entity10", "@entity3", "@entity4", "@entity8"],
    "title": "No synergistic activity of @entity7 and XXXX in the treatment of @entity3 .\n"
}
```

#### biomrc_tiny_A

- **Size of downloaded dataset files:** 0.02 MB
- **Size of the generated dataset:** 0.07 MB
- **Total amount of disk used:** 0.09 MB

An example of 'test' looks as follows.
```
This example was too long and was cropped:

{
    "abstract": "\"OBJECTIVE: Decompressive craniectomy (DC) requires later cranioplasty (CP) in survivors. However, if additional ventriculoperit...",
    "answer": "@entity260 :: (MESH:D011183,Disease) :: ['Postoperative Complications']\n",
    "entities_list": ["@entity1 :: ('9606', 'Species') :: ['Patients', 'patients', 'Patient']", "@entity260 :: ('MESH:D011183', 'Disease') :: ['VPS regarding postoperative complications']", "@entity1276 :: ('MESH:D006849', 'Disease') :: ['hydrocephalus']"],
    "title": "Cranioplasty and Ventriculoperitoneal Shunt Placement after Decompressive Craniectomy: Staged Surgery Is Associated with Fewer XXXX .\n"
}
```

### Data Fields

The data fields are the same among all splits.

#### biomrc_large_A
- `abstract`: a `string` feature.
- `title`: a `string` feature.
- `entities_list`: a `list` of `string` features.
- `answer`: a `string` feature.

#### biomrc_large_B
- `abstract`: a `string` feature.
- `title`: a `string` feature.
- `entities_list`: a `list` of `string` features.
- `answer`: a `string` feature.

#### biomrc_small_A
- `abstract`: a `string` feature.
- `title`: a `string` feature.
- `entities_list`: a `list` of `string` features.
- `answer`: a `string` feature.

#### biomrc_small_B
- `abstract`: a `string` feature.
- `title`: a `string` feature.
- `entities_list`: a `list` of `string` features.
- `answer`: a `string` feature.

#### biomrc_tiny_A
- `abstract`: a `string` feature.
- `title`: a `string` feature.
- `entities_list`: a `list` of `string` features.
- `answer`: a `string` feature.

### Data Splits

#### biomrc_large_A

|              |train |validation|test |
|--------------|-----:|---------:|----:|
|biomrc_large_A|700000|     50000|62707|

#### biomrc_large_B

|              |train |validation|test |
|--------------|-----:|---------:|----:|
|biomrc_large_B|700000|     50000|62707|

#### biomrc_small_A

|              |train|validation|test|
|--------------|----:|---------:|---:|
|biomrc_small_A|87500|      6250|6250|

#### biomrc_small_B

|              |train|validation|test|
|--------------|----:|---------:|---:|
|biomrc_small_B|87500|      6250|6250|

#### biomrc_tiny_A

|             |test|
|-------------|---:|
|biomrc_tiny_A|  30|

## Dataset Creation

### Curation Rationale

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

#### Who are the source language producers?

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Annotations

#### Annotation process

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

#### Who are the annotators?

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Personal and Sensitive Information

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Discussion of Biases

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Other Known Limitations

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

## Additional Information

### Dataset Curators

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Licensing Information

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Citation Information

```
@inproceedings{pappas-etal-2020-biomrc,
    title = "{B}io{MRC}: A Dataset for Biomedical Machine Reading Comprehension",
    author = "Pappas, Dimitris  and
      Stavropoulos, Petros  and
      Androutsopoulos, Ion  and
      McDonald, Ryan",
    booktitle = "Proceedings of the 19th SIGBioMed Workshop on Biomedical Language Processing",
    month = jul,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/2020.bionlp-1.15",
    pages = "140--149",
    abstract = "We introduce BIOMRC, a large-scale cloze-style biomedical MRC dataset. Care was taken to reduce noise, compared to the previous BIOREAD dataset of Pappas et al. (2018). Experiments show that simple heuristics do not perform well on the new dataset and that two neural MRC models that had been tested on BIOREAD perform much better on BIOMRC, indicating that the new dataset is indeed less noisy or at least that its task is more feasible. Non-expert human performance is also higher on the new dataset compared to BIOREAD, and biomedical experts perform even better. We also introduce a new BERT-based MRC model, the best version of which substantially outperforms all other methods tested, reaching or surpassing the accuracy of biomedical experts in some experiments. We make the new dataset available in three different sizes, also releasing our code, and providing a leaderboard.",
}

```


### Contributions

Thanks to [@lewtun](https://github.com/lewtun), [@PetrosStav](https://github.com/PetrosStav), [@lhoestq](https://github.com/lhoestq), [@thomwolf](https://github.com/thomwolf) for adding this dataset.