shuttie commited on
Commit
cf05905
·
0 Parent(s):

initial commit

Browse files
.gitattributes ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ *.zst filter=lfs diff=lfs merge=lfs -text
2
+ *.gz filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ .venv
2
+ .mypy_cache
README.md ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ tags:
6
+ - text
7
+ pretty_name: MSMARCO
8
+ size_categories:
9
+ - "100K<n<1M"
10
+ source_datasets:
11
+ - MSMARCO
12
+ task_categories:
13
+ - sentence-similarity
14
+ dataset_info:
15
+ config_name: default
16
+ splits:
17
+ - name: train
18
+ num_bytes: 1
19
+ num_examples: 1
20
+ - name: test
21
+ num_bytes: 1
22
+ num_examples: 1
23
+ - name: dev
24
+ num_bytes: 1
25
+ num_examples: 1
26
+ train-eval-index:
27
+ - config: default
28
+ task: sentence-similarity
29
+ splits:
30
+ train_split: train
31
+ eval_split: test
32
+ configs:
33
+ - config_name: default
34
+ data_files:
35
+ - split: train
36
+ path: "data/train/*"
37
+ - split: test
38
+ path: "data/test/*"
39
+ - split: dev
40
+ path: "data/dev/*"
41
+ ---
42
+
43
+ # MSMARCO dataset
44
+
45
+ A dataset in a [nixietune](https://github.com/nixiesearch/nixietune) compatible format:
46
+
47
+ ```json
48
+ {
49
+ "query": ")what was the immediate impact of the success of the manhattan project?",
50
+ "pos": [
51
+ {
52
+ "doc": "The presence of communication amid scientific minds was equally important to the success of the Manhattan Project as scientific intellect was. The only cloud hanging over the impressive achievement of the atomic researchers and engineers is what their success truly meant; hundreds of thousands of innocent lives obliterated.",
53
+ "score": 1
54
+ }
55
+ ]
56
+ }
57
+ ```
58
+
59
+ This is the original converted dataset with the following splits:
60
+ * train: 502939 queries, only positives.
61
+ * test: 43 queries, positives and negatives.
62
+ * dev: 6980 queries, only positives.
63
+
64
+ ## Usage
65
+
66
+ ```python
67
+ from datasets import load_dataset
68
+
69
+ data = load_dataset('nixiesearch/msmarco', split="train")
70
+ ```
71
+
72
+ ## License
73
+
74
+ Apache 2.0
convert.py ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from datasets import load_dataset
2
+ from dataclasses import dataclass, field
3
+ import logging
4
+ from transformers import HfArgumentParser
5
+ from tqdm import tqdm
6
+ from typing import Dict, List
7
+ import json
8
+
9
+ logger = logging.getLogger()
10
+ logger.setLevel(logging.INFO)
11
+ console_handler = logging.StreamHandler()
12
+ console_handler.setFormatter(
13
+ logging.Formatter("[%(asctime)s %(levelname)s] %(message)s")
14
+ )
15
+ logger.handlers = [console_handler]
16
+
17
+
18
+ @dataclass
19
+ class ConversionAgruments:
20
+ path: str = field(metadata={"help": "Path to the MAMARCO dataset"})
21
+ out: str = field(metadata={"help": "Output path"})
22
+
23
+
24
+ @dataclass
25
+ class QRel:
26
+ doc: int
27
+ score: int
28
+
29
+
30
+ def load_json(path: str, split: str = "train") -> List[str]:
31
+ dataset = load_dataset("json", data_files=path, split=split)
32
+ cache: List[str] = []
33
+ for row in tqdm(dataset, desc=f"loading {path}"):
34
+ index = int(row["_id"])
35
+ if index >= len(cache):
36
+ cache.extend([""] * (1 + 2 * max(index, len(cache))))
37
+ cache[index] = row["text"]
38
+ return cache
39
+
40
+
41
+ def load_qrel(path: str) -> Dict[int, List[QRel]]:
42
+ dataset = load_dataset("csv", data_files=path, split="train", delimiter="\t")
43
+ print(dataset.features)
44
+ cache: Dict[int, List[QRel]] = {}
45
+ for row in tqdm(dataset, desc=f"loading {path}"):
46
+ qid = int(row["query-id"])
47
+ qrel = QRel(int(row["corpus-id"]), int(row["score"]))
48
+ if qid in cache:
49
+ cache[qid].append(qrel)
50
+ else:
51
+ cache[qid] = [qrel]
52
+ return cache
53
+
54
+
55
+ def process(
56
+ qrels: Dict[int, List[QRel]], queries: List[str], corpus: List[str]
57
+ ) -> List[Dict]:
58
+ result = []
59
+ for query, rels in tqdm(qrels.items(), desc="processing split"):
60
+ pos = [
61
+ {"doc": corpus[rel.doc], "score": rel.score}
62
+ for rel in rels
63
+ if rel.doc < len(corpus) and rel.score > 0 and corpus[rel.doc] != ""
64
+ ]
65
+ neg = [
66
+ {"doc": corpus[rel.doc], "score": rel.score}
67
+ for rel in rels
68
+ if rel.doc < len(corpus) and rel.score == 0 and corpus[rel.doc] != ""
69
+ ]
70
+ group = {"query": queries[query], "pos": pos}
71
+ if len(neg) > 0:
72
+ group["neg"] = neg
73
+ result.append(group)
74
+ return result
75
+
76
+
77
+ def main():
78
+ parser = HfArgumentParser((ConversionAgruments))
79
+ (args,) = parser.parse_args_into_dataclasses()
80
+ print(f"Args: {args}")
81
+ corpus = load_json(f"{args.path}/corpus.jsonl", split="train")
82
+ queries = load_json(f"{args.path}/queries.jsonl")
83
+ qrels = {
84
+ "dev": process(load_qrel(f"{args.path}/qrels/dev.tsv"), queries, corpus),
85
+ "test": process(load_qrel(f"{args.path}/qrels/test.tsv"), queries, corpus),
86
+ "train": process(load_qrel(f"{args.path}/qrels/train.tsv"), queries, corpus),
87
+ }
88
+ print("processing done")
89
+ for split, data in qrels.items():
90
+ with open(f"{args.out}/{split}.jsonl", "w") as out:
91
+ for item in data:
92
+ json.dump(item, out)
93
+ out.write("\n")
94
+ print("done")
95
+
96
+
97
+ if __name__ == "__main__":
98
+ main()
data/dev/dev.jsonl.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:92ff05e37188b132fdac1734e823e78b8c92a2e00622f9886711b0d7d9274624
3
+ size 1109843
data/test/test.jsonl.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3c4362a2f021d6b45f068d2f13aee9336b84123e718df797930956a540f30167
3
+ size 860084
data/train/train.jsonl.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfe4888522ab3a7be8bfa406f3e45a207193cd8b0fd026acd895cb6c1213a86f
3
+ size 92239408
requirements.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ datasets