shuttie commited on
Commit
250cec6
·
0 Parent(s):

initial commit

Browse files
.gitattributes ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ *.zst filter=lfs diff=lfs merge=lfs -text
2
+ *.gz filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ .venv
2
+ .mypy_cache
README.md ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ tags:
6
+ - text
7
+ pretty_name: MS MARCO hard negatives
8
+ size_categories:
9
+ - "100K<n<1M"
10
+ source_datasets:
11
+ - MSMARCO
12
+ task_categories:
13
+ - sentence-similarity
14
+ dataset_info:
15
+ config_name: default
16
+ features:
17
+ - name: query
18
+ dtype: string
19
+ - name: pos
20
+ list:
21
+ - name: doc
22
+ dtype: string
23
+ - name: score
24
+ dtype: float
25
+ - name: neg
26
+ list:
27
+ - name: doc
28
+ dtype: string
29
+ - name: score
30
+ dtype: float
31
+ splits:
32
+ - name: train
33
+ num_bytes: 89609915
34
+ num_examples: 502939
35
+ train-eval-index:
36
+ - config: default
37
+ task: sentence-similarity
38
+ splits:
39
+ train_split: train
40
+ eval_split: test
41
+ configs:
42
+ - config_name: default
43
+ data_files:
44
+ - split: train
45
+ path: "data/train/*"
46
+ ---
47
+
48
+ # MS MARCO hard negatives dataset
49
+
50
+ A dataset in a [nixietune](https://github.com/nixiesearch/nixietune) compatible format:
51
+
52
+ ```json
53
+ {
54
+ "query": ")what was the immediate impact of the success of the manhattan project?",
55
+ "pos": [
56
+ {
57
+ "doc": "The presence of communication amid scientific minds was equally important to the success of the Manhattan Project as scientific intellect was. The only cloud hanging over the impressive achievement of the atomic researchers and engineers is what their success truly meant; hundreds of thousands of innocent lives obliterated.",
58
+ "score": 1
59
+ }
60
+ ],
61
+ "neg": [
62
+ {
63
+ "doc": "Abstract. The pivotal engineering and scientific success of the Twentieth century was the Manhattan Project. The Manhattan Project assimilated concepts and leaders from all scientific fields and engineering disciplines to construct the first two atomic bombs.",
64
+ "score": 0.0
65
+ },
66
+ {
67
+ "doc": "The pivotal engineering and scientific success of the Twentieth century was the Manhattan Project. The Manhattan Project assimilated concepts and leaders from all scientific fields and engineering disciplines to construct the first two atomic bombs.",
68
+ "score": 0.0
69
+ }
70
+ ]
71
+ }
72
+ ```
73
+
74
+ This is the original [BeIR-msmarco](https://huggingface.co/datasets/BeIR/msmarco) joined with the [msmarco-hard-negatives](https://huggingface.co/datasets/sentence-transformers/msmarco-hard-negatives) dataset with the following splits:
75
+ * train: 502939 queries, only positives.
76
+
77
+ ## Usage
78
+
79
+ ```python
80
+ from datasets import load_dataset
81
+
82
+ data = load_dataset('nixiesearch/ms_marco_hard_negatives')
83
+ print(data["train"].features)
84
+ ```
85
+
86
+ ## License
87
+
88
+ Apache 2.0
convert.py ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from datasets import load_dataset, Features, Value, Sequence
2
+ from dataclasses import dataclass, field
3
+ import logging
4
+ from transformers import HfArgumentParser
5
+ from tqdm import tqdm
6
+ from typing import Dict, List
7
+ import json
8
+ import numpy as np
9
+ from itertools import islice
10
+
11
+ logger = logging.getLogger()
12
+ logger.setLevel(logging.INFO)
13
+ console_handler = logging.StreamHandler()
14
+ console_handler.setFormatter(
15
+ logging.Formatter("[%(asctime)s %(levelname)s] %(message)s")
16
+ )
17
+ logger.handlers = [console_handler]
18
+
19
+
20
+ @dataclass
21
+ class ConversionAgruments:
22
+ hardneg: str = field(metadata={"help": "Path to msmarco-hard-negatives.jsonl file"})
23
+ out: str = field(metadata={"help": "Output path"})
24
+
25
+
26
+ @dataclass
27
+ class QRel:
28
+ doc: int
29
+ score: int
30
+
31
+
32
+ def load_msmarco(path: str, split) -> Dict[int, str]:
33
+ dataset = load_dataset(path, split, split=split)
34
+ cache: Dict[int, str] = {}
35
+ for row in tqdm(dataset, desc=f"loading {path} split={split}"):
36
+ index = int(row["_id"])
37
+ cache[index] = row["text"]
38
+ return cache
39
+
40
+
41
+ def load_qrel(path: str, split: str) -> Dict[int, List[QRel]]:
42
+ dataset = load_dataset(path, split=split)
43
+ print(dataset.features)
44
+ cache: Dict[int, List[QRel]] = {}
45
+ for row in tqdm(dataset, desc=f"loading {path} split={split}"):
46
+ qid = int(row["query-id"])
47
+ qrel = QRel(int(row["corpus-id"]), int(row["score"]))
48
+ if qid in cache:
49
+ cache[qid].append(qrel)
50
+ else:
51
+ cache[qid] = [qrel]
52
+ return cache
53
+
54
+
55
+ def process_raw(
56
+ qrels: Dict[int, List[QRel]],
57
+ queries: Dict[int, str],
58
+ corpus: Dict[int, str],
59
+ hardneg: Dict[int, List[int]],
60
+ ) -> List[Dict]:
61
+ result = []
62
+ for query, rels in tqdm(qrels.items(), desc="processing split"):
63
+ pos = [
64
+ {"doc": corpus[rel.doc], "score": rel.score}
65
+ for rel in rels
66
+ if rel.doc in corpus and rel.score > 0
67
+ ]
68
+ neg = [
69
+ {"doc": corpus[doc], "score": 0.0}
70
+ for doc in hardneg.get(query, [])
71
+ if doc in corpus
72
+ ]
73
+ group = {"query": queries[query], "pos": pos, "neg": neg}
74
+ result.append(group)
75
+ return result
76
+
77
+
78
+ def load_hardneg(path: str):
79
+ result: Dict[int, List[int]] = {}
80
+ with open(path, "r") as jsonfile:
81
+ for line in tqdm(jsonfile, total=808731, desc="loading hard negatives"):
82
+ row = json.loads(line)
83
+ scores: Dict[int, float] = {}
84
+ for method, docs in row["neg"].items():
85
+ for index, doc in enumerate(docs):
86
+ prev = scores.get(int(doc), 0.0)
87
+ scores[int(doc)] = prev + 1.0 / (60 + index)
88
+ topneg = [
89
+ doc
90
+ for doc, score in sorted(
91
+ scores.items(), key=lambda x: x[1], reverse=True
92
+ )
93
+ ]
94
+ result[int(row["qid"])] = topneg[:32]
95
+ return result
96
+
97
+
98
+ def main():
99
+ parser = HfArgumentParser((ConversionAgruments))
100
+ (args,) = parser.parse_args_into_dataclasses()
101
+ print(f"Args: {args}")
102
+ hardneg = load_hardneg(args.hardneg)
103
+ qrels = {
104
+ "train": load_qrel("BeIR/msmarco-qrels", split="train"),
105
+ "dev": load_qrel("BeIR/msmarco-qrels", split="validation"),
106
+ }
107
+ queries = load_msmarco("BeIR/msmarco", split="queries")
108
+ corpus = load_msmarco("BeIR/msmarco", split="corpus")
109
+ print("processing done")
110
+ for split, data in qrels.items():
111
+ dataset = process_raw(data, queries, corpus, hardneg)
112
+ with open(f"{args.out}/{split}.jsonl", "w") as out:
113
+ for item in dataset:
114
+ json.dump(item, out)
115
+ out.write("\n")
116
+ print("done")
117
+
118
+
119
+ if __name__ == "__main__":
120
+ main()
data/train/train-00.jsonl.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c6034fd0aff6eda2d9ac8a5c3e304aec0183f127141a4cd49cd22c0c4a936fc2
3
+ size 371800261
data/train/train-01.jsonl.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:183d9bf9fdad674a537d9ba566c11b84281d35f9a6e07e46736bc7869d3fefdb
3
+ size 373548650
data/train/train-02.jsonl.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c394b2ed33aca6ded6d9acf4504cf721b452aa7045b455951b387ac51870d2d1
3
+ size 373875202
data/train/train-03.jsonl.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da8771ccb47e681181fc8c7aa23fcab74f0566e1f953a3aa454298cbc4c4a1f9
3
+ size 371204499
data/train/train-04.jsonl.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:150cccc543b38f0d8b612ba688b4ffada310c239d95c931644b8a9550a300e5c
3
+ size 368843006
data/train/train-05.jsonl.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:513aa76ff5395eebbd4acaa48ab31b3ae7682a952c0ff1309e15f23b2ed292c9
3
+ size 10942759
requirements.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ datasets
2
+ transformers