nhanson2 commited on
Commit
b4988be
·
verified ·
1 Parent(s): 9f2a777

Update README.md

Browse files

Adds header image file!

Files changed (1) hide show
  1. README.md +46 -43
README.md CHANGED
@@ -1,46 +1,49 @@
1
- ---
2
- license: mit
3
- configs:
4
- - config_name: default
5
- data_files:
6
- - split: train
7
- path: data/train-*
8
- dataset_info:
9
- features:
10
- - name: hsi
11
- dtype: string
12
- - name: rgb
13
- dtype: string
14
- - name: segmentation
15
- dtype: string
16
- - name: spectra
17
- dtype:
18
- array2_d:
19
- shape:
20
- - 1
21
- - 305
22
- dtype: float32
23
- splits:
24
- - name: train
25
- num_bytes: 717630
26
- num_examples: 504
27
- download_size: 521529
28
- dataset_size: 717630
29
- task_categories:
30
- - image-classification
31
- - image-segmentation
32
- language:
33
- - en
34
- tags:
35
- - Hyperspectral
36
- - Robotics
37
- - Robot
38
- - Autonomous
39
- - Multispectral
40
- pretty_name: 'Hyper-Drive: Hyperspectral Driving Dataset'
41
- size_categories:
42
- - n<1K
43
- ---
 
 
 
44
  Towards automated analysis of large environments, hyperspectral sensors must be adapted into a format where they can be operated from mobile robots. In this dataset, we highlight hyperspectral datacubes collected from the [Hyper-Drive ](https://river-lab.github.io/hyper_drive_data/) imaging system. Our system collects and registers datacubes spanning the visible to shortwave infrared (660-1700 nm) in 33 wavelength channels. The system also simultaneously captures the ambient solar spectrum reflected off a white reference tile. The dataset consists of 500 labeled datacubes from on-road and off-road terrain compliant with the [ATLAS](http://gvsets.ndia-mich.org/documents/AAIR/2022/ATLAS,%20an%20All-Terrain%20Labelset%20for%20Autonomous%20Systems.pdf).
45
 
46
  This work first appeared at [WHISPERS](https://www.ieee-whispers.com/) 2023 In Athens, Greece and is a product of the [Robotics and Intelligent Vehicles Research Laboratory (RIVeR)](https://www.robot.neu.edu/) at [Northeastern University](https://www.northeastern.edu/).
 
1
+ ---
2
+ license: mit
3
+ configs:
4
+ - config_name: default
5
+ data_files:
6
+ - split: train
7
+ path: data/train-*
8
+ dataset_info:
9
+ features:
10
+ - name: hsi
11
+ dtype: string
12
+ - name: rgb
13
+ dtype: string
14
+ - name: segmentation
15
+ dtype: string
16
+ - name: spectra
17
+ dtype:
18
+ array2_d:
19
+ shape:
20
+ - 1
21
+ - 305
22
+ dtype: float32
23
+ splits:
24
+ - name: train
25
+ num_bytes: 717630
26
+ num_examples: 504
27
+ download_size: 521529
28
+ dataset_size: 717630
29
+ task_categories:
30
+ - image-classification
31
+ - image-segmentation
32
+ language:
33
+ - en
34
+ tags:
35
+ - Hyperspectral
36
+ - Robotics
37
+ - Robot
38
+ - Autonomous
39
+ - Multispectral
40
+ pretty_name: 'Hyper-Drive: Hyperspectral Driving Dataset'
41
+ size_categories:
42
+ - n<1K
43
+ ---
44
+
45
+ ![](./hyper_drive.jpg)
46
+
47
  Towards automated analysis of large environments, hyperspectral sensors must be adapted into a format where they can be operated from mobile robots. In this dataset, we highlight hyperspectral datacubes collected from the [Hyper-Drive ](https://river-lab.github.io/hyper_drive_data/) imaging system. Our system collects and registers datacubes spanning the visible to shortwave infrared (660-1700 nm) in 33 wavelength channels. The system also simultaneously captures the ambient solar spectrum reflected off a white reference tile. The dataset consists of 500 labeled datacubes from on-road and off-road terrain compliant with the [ATLAS](http://gvsets.ndia-mich.org/documents/AAIR/2022/ATLAS,%20an%20All-Terrain%20Labelset%20for%20Autonomous%20Systems.pdf).
48
 
49
  This work first appeared at [WHISPERS](https://www.ieee-whispers.com/) 2023 In Athens, Greece and is a product of the [Robotics and Intelligent Vehicles Research Laboratory (RIVeR)](https://www.robot.neu.edu/) at [Northeastern University](https://www.northeastern.edu/).