Datasets:

Modalities:
Text
Size:
< 1K
ArXiv:
Libraries:
Datasets
License:
File size: 2,169 Bytes
5b91c70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68813ae
5b91c70
 
 
 
68813ae
 
 
5b91c70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a7904f
5b91c70
1a7904f
 
5b91c70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7a9211
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
"""MCoNaLa dataset."""

import json
import datasets


_CITATION = """\
@article{wang2022mconala,
  title={MCoNaLa: A Benchmark for Code Generation from Multiple Natural Languages},
  author={Zhiruo Wang, Grace Cuenca, Shuyan Zhou, Frank F. Xu, Graham Neubig},
  journal={arXiv preprint arXiv:2203.08388},
  year={2022}
}
"""

_DESCRIPTION = """\
MCoNaLa is a Multilingual Code/Natural Language Challenge dataset with 
896 NL-Code pairs in three languages: Spanish, Japanese, and Russian. 
"""

_HOMEPAGE = "https://github.com/zorazrw/multilingual-conala"
_URLs = {
    "es": "es_test.json",
    "ja": "ja_test.json",
    "ru": "ru_test.json",
}

class MCoNaLa(datasets.GeneratorBasedBuilder):
    """MCoNaLa NL-to-Code dataset."""

    VERSION = datasets.Version("1.0.0")


    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name=lang,
            version=datasets.Version("1.0.0"),
            description=_DESCRIPTION,
        ) for lang in _URLs.keys()
    ]

    DEFAULT_CONFIG_NAME = "en"
    
    
    def _info(self):
        features = datasets.Features({"question_id": datasets.Value("int64"),
                                      "intent": datasets.Value("string"),
                                      "rewritten_intent": datasets.Value("string"),
                                      "snippet": datasets.Value("string"),
                                     })
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            supervised_keys=None,
            citation=_CITATION,
            homepage=_HOMEPAGE)

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        config_urls = _URLs[self.config.name]
        data_dir = dl_manager.download_and_extract(config_urls)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={"filepath": data_dir, "split": "train"},
            ),
        ]


    def _generate_examples(self, filepath, split):
        dataset = json.load(open(filepath, encoding="utf-8"))
        for key, line in enumerate(dataset):
            yield key, line