Datasets:
File size: 14,627 Bytes
6a4d4b9 4f1abfa 6a4d4b9 24f27db 6a4d4b9 6b8c6ca 6a4d4b9 4f1abfa 6a4d4b9 4f1abfa 50930ce 6a4d4b9 4f1abfa 6a4d4b9 24f27db 6a4d4b9 4f1abfa 6a4d4b9 7af8bc1 6a4d4b9 24f27db 6a4d4b9 24f27db 6a4d4b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""MEDLINE/PubMed data."""
import copy
import xml.etree.ElementTree as ET
import datasets
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
Courtesy of the U.S. National Library of Medicine.
"""
_DESCRIPTION = """\
NLM produces a baseline set of MEDLINE/PubMed citation records in XML format for download on an annual basis. The annual baseline is released in December of each year. Each day, NLM produces update files that include new, revised and deleted citations. See our documentation page for more information.
"""
_HOMEPAGE = "https://www.nlm.nih.gov/databases/download/pubmed_medline.html"
_LICENSE = ""
# The HuggingFace dataset library don't host the datasets but only point to the original files
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
# Note these URLs here are used by MockDownloadManager.create_dummy_data_list
_URLs = [f"https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed23n{i:04d}.xml.gz" for i in range(1, 1167)]
# Copyright Ferry Boender, released under the MIT license.
# Modified by @Narsil to handle more oddities
def deepupdate(target, src):
"""Deep update target dict with src
For each k,v in src: if k doesn't exist in target, it is deep copied from
src to target. Otherwise, if v is a list, target[k] is extended with
src[k]. If v is a set, target[k] is updated with v, If v is a dict,
recursively deep-update it.
Examples:
>>> t = {'name': 'Ferry', 'hobbies': ['programming', 'sci-fi']}
>>> deepupdate(t, {'hobbies': ['gaming']})
>>> print(t)
{'name': 'Ferry', 'hobbies': ['programming', 'sci-fi', 'gaming']}
"""
for k, v in src.items():
if k in target and isinstance(target[k], int) and isinstance(v, str):
try:
v = int(v)
except Exception:
pass
if k in target and type(target[k]) != type(v):
logger.warning(f"Ignoring field {k} it's a {type(v)} and we expect a {type(target[k])}")
continue
if type(v) == list:
if k not in target:
target[k] = copy.deepcopy(v)
elif isinstance(target[k], list):
target[k].extend(v)
elif isinstance(target[k], str):
# Very special case to handle `AbstractText` which sometimes end up
# being a list.
new_v = " ".join(el for el in v if isinstance(el, str))
target[k] = new_v
else:
logger.warning(f"Ignoring field {k} it's a {type(v)} and we expect a {type(target[k])}")
elif type(v) == dict:
if k not in target:
target[k] = copy.deepcopy(v)
elif isinstance(target[k], dict):
deepupdate(target[k], v)
else:
logger.warning(f"Ignoring field {k} it's a {type(v)} and we expect a {type(target[k])}")
elif type(v) == set:
if k not in target:
target[k] = v.copy()
elif isinstance(target[k], set):
target[k].update(v.copy())
else:
logger.warning(f"Ignoring field {k} it's a {type(v)} and we expect a {type(target[k])}")
else:
if isinstance(target[k], (list, tuple, dict)):
logger.warning(f"Ignoring field {k} it's a {type(v)} and we expect a {type(target[k])}")
continue
target[k] = copy.copy(v)
def default_date():
return {"Year": 0, "Month": 0, "Day": 0}
def default_inline_article():
return {
# 'Journal': Journal,
"Abstract": {"AbstractText": ""},
"ArticleTitle": "",
# 'Pagination': {'MedlinePgn': datasets.Value('string')},
"AuthorList": {"Author": []},
"Language": "",
"GrantList": {
"Grant": [],
},
"PublicationTypeList": {"PublicationType": []},
}
def default_article():
return {
"MedlineCitation": {
"PMID": 0,
"DateCompleted": default_date(),
"NumberOfReferences": 0,
"DateRevised": default_date(),
"Article": default_inline_article(),
"MedlineJournalInfo": {"Country": ""},
"ChemicalList": {"Chemical": []},
"CitationSubset": "",
"MeshHeadingList": {"MeshHeading": []},
},
"PubmedData": {
"ArticleIdList": [{"ArticleId": []}],
"PublicationStatus": "",
"History": {"PubMedPubDate": []},
"ReferenceList": [],
},
}
class Pubmed(datasets.GeneratorBasedBuilder):
"""Pubmed citations records"""
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="2022", description="The 2022 annual record", version=datasets.Version("2.0.0")),
]
# FILLED automatically from features
SIMPLE_KEYS = {"PubmedArticleSet"}
LIST_KEYS = {"PubmedArticle"}
IGNORE_KEYS = set()
def fill_keys_from_features(self, features):
if isinstance(features, dict):
for key, value in features.items():
if isinstance(value, datasets.Sequence):
self.LIST_KEYS.add(key)
self.fill_keys_from_features(value.feature)
else:
self.SIMPLE_KEYS.add(key)
self.fill_keys_from_features(value)
def xml_to_dictionnary(self, parentElement):
data = {}
if parentElement.tag in {"AbstractText", "ArticleTitle"}:
# XXX
# Very special case, it will contain html leading to having very odd structure
tag = parentElement.tag
string = ET.tostring(parentElement).decode("utf-8").strip()
inner_string = string[len(f"<{tag}>") : -len(f"</{tag}>")]
return {parentElement.tag: inner_string}
for child in list(parentElement):
child.text = child.text if (child.text is not None) else " "
key = child.tag
if len(child) == 0:
value = child.text.strip()
else:
value = self.xml_to_dictionnary(child)
if isinstance(value, dict) and set(value.keys()) == {key}:
value = value[key]
if key in data:
old_value = data[key]
if isinstance(old_value, dict):
data[key] = [old_value, value]
elif isinstance(old_value, list):
data[key].append(value)
elif key in self.LIST_KEYS:
data[key] = [value]
elif key in self.SIMPLE_KEYS:
data[key] = value
elif key in self.IGNORE_KEYS:
continue
else:
logger.info(f"Ignoring key {key} from {parentElement.tag}")
self.IGNORE_KEYS.add(key)
# Filling defaults
if parentElement.tag == "MeshHeading" and "QualifierName" not in data:
data["QualifierName"] = ""
elif parentElement.tag == "Author":
if "ForeName" not in data:
data["ForeName"] = ""
if "Initials" not in data:
data["Initials"] = ""
if "LastName" not in data:
data["LastName"] = ""
if "CollectiveName" not in data:
data["CollectiveName"] = ""
elif parentElement.tag == "JournalIssue":
if "Volume" not in data:
data["Volume"] = ""
if "Issue" not in data:
data["Issue"] = ""
elif parentElement.tag == "Grant" and "GrantID" not in data:
data["GrantID"] = ""
return {parentElement.tag: data}
def _info(self):
Date = {
"Year": datasets.Value("int32"),
"Month": datasets.Value("int32"),
"Day": datasets.Value("int32"),
}
MeshHeading = {"DescriptorName": datasets.Value("string"), "QualifierName": datasets.Value("string")}
MedlineJournalInfo = {
"Country": datasets.Value("string"),
# Too inconsistent
# 'MedlineTA': datasets.Value('string'),
# 'NlmUniqueID': datasets.Value('string'),
# 'ISSNLinking': datasets.Value('string'),
}
Chemical = {
"RegistryNumber": datasets.Value("string"),
"NameOfSubstance": datasets.Value("string"),
}
# Too inconsistent in the data to be used
# Journal = {
# 'ISSN': datasets.Value('string'),
# 'JournalIssue': {
# 'Volume': datasets.Value('string'),
# 'Issue': datasets.Value('string'),
# },
# # 'PubDate': Date,
# 'Title': datasets.Value('string'),
# 'ISOAbbreviation': datasets.Value('string')
# }
Author = {
"LastName": datasets.Value("string"),
"ForeName": datasets.Value("string"),
"Initials": datasets.Value("string"),
"CollectiveName": datasets.Value("string"),
}
Reference = {
"Citation": datasets.Value("string"),
"CitationId": datasets.Value("int32"),
}
Grant = {
"GrantID": datasets.Value("string"),
"Agency": datasets.Value("string"),
"Country": datasets.Value("string"),
}
Article = {
# 'Journal': Journal,
"Abstract": {"AbstractText": datasets.Value("string")},
"ArticleTitle": datasets.Value("string"),
# Too inconistent
# 'Pagination': {'MedlinePgn': datasets.Value('string')},
"AuthorList": {"Author": datasets.Sequence(Author)},
"Language": datasets.Value("string"),
"GrantList": {
"Grant": datasets.Sequence(Grant),
},
"PublicationTypeList": {"PublicationType": datasets.Sequence(datasets.Value("string"))},
}
features = datasets.Features(
{
"MedlineCitation": {
"PMID": datasets.Value("int32"),
"DateCompleted": Date,
"NumberOfReferences": datasets.Value("int32"),
"DateRevised": Date,
"Article": Article,
"MedlineJournalInfo": MedlineJournalInfo,
"ChemicalList": {"Chemical": datasets.Sequence(Chemical)},
"CitationSubset": datasets.Value("string"),
"MeshHeadingList": {
"MeshHeading": datasets.Sequence(MeshHeading),
},
},
"PubmedData": {
"ArticleIdList": datasets.Sequence({"ArticleId": datasets.Sequence(datasets.Value("string"))}),
"PublicationStatus": datasets.Value("string"),
"History": {"PubMedPubDate": datasets.Sequence(Date)},
"ReferenceList": datasets.Sequence(Reference),
},
}
)
self.fill_keys_from_features(features)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
dl_dir = dl_manager.download_and_extract(_URLs)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"filenames": dl_dir},
),
]
def update_citation(self, article):
"""
ArticleId and ArticleIdList are already used field name so we rewrite and
flatten those as {Citation, CitationId}.
"""
citations = []
try:
list_ = article["PubmedData"]["ReferenceList"]
except Exception:
return
for ref in list_:
if "Reference" not in ref:
continue
for re in ref["Reference"]:
if "Citation" not in re:
continue
citation = re["Citation"]
if "ArticleIdList" not in re:
continue
for r in re["ArticleIdList"]:
if "ArticleId" not in r:
continue
for rr in r["ArticleId"]:
try:
citation = {"Citation": citation, "CitationId": int(rr)}
except Exception:
continue
citations.append(citation)
article["PubmedData"]["ReferenceList"] = citations
def _generate_examples(self, filenames):
"""Yields examples."""
id_ = 0
for filename in filenames:
try:
tree = ET.parse(filename)
root = tree.getroot()
xmldict = self.xml_to_dictionnary(root)
except ET.ParseError:
logger.warning(f"Ignoring file {filename}, it is malformed")
continue
for article in xmldict["PubmedArticleSet"]["PubmedArticle"]:
self.update_citation(article)
new_article = default_article()
try:
deepupdate(new_article, article)
except Exception:
logger.warning(f"Ignoring article {article}, it is malformed")
continue
try:
_ = self.info.features.encode_example(new_article)
except Exception as e:
logger.warning(f"Ignore example because {e}")
continue
yield id_, new_article
id_ += 1
|