File size: 14,627 Bytes
6a4d4b9
 
 
 
 
 
 
 
 
 
 
 
 
 
4f1abfa
6a4d4b9
 
 
24f27db
6a4d4b9
 
 
 
6b8c6ca
6a4d4b9
 
 
4f1abfa
6a4d4b9
 
 
 
 
 
 
 
 
 
 
 
4f1abfa
50930ce
6a4d4b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f1abfa
6a4d4b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24f27db
6a4d4b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f1abfa
6a4d4b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7af8bc1
6a4d4b9
 
 
24f27db
6a4d4b9
 
24f27db
6a4d4b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""MEDLINE/PubMed data."""


import copy
import xml.etree.ElementTree as ET

import datasets


logger = datasets.logging.get_logger(__name__)


_CITATION = """\
Courtesy of the U.S. National Library of Medicine.
"""

_DESCRIPTION = """\
NLM produces a baseline set of MEDLINE/PubMed citation records in XML format for download on an annual basis. The annual baseline is released in December of each year. Each day, NLM produces update files that include new, revised and deleted citations. See our documentation page for more information.
"""

_HOMEPAGE = "https://www.nlm.nih.gov/databases/download/pubmed_medline.html"

_LICENSE = ""

# The HuggingFace dataset library don't host the datasets but only point to the original files
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
# Note these URLs here are used by MockDownloadManager.create_dummy_data_list
_URLs = [f"https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed23n{i:04d}.xml.gz" for i in range(1, 1167)]


# Copyright Ferry Boender, released under the MIT license.
# Modified by @Narsil to handle more oddities
def deepupdate(target, src):
    """Deep update target dict with src
    For each k,v in src: if k doesn't exist in target, it is deep copied from
    src to target. Otherwise, if v is a list, target[k] is extended with
    src[k]. If v is a set, target[k] is updated with v, If v is a dict,
    recursively deep-update it.

    Examples:
    >>> t = {'name': 'Ferry', 'hobbies': ['programming', 'sci-fi']}
    >>> deepupdate(t, {'hobbies': ['gaming']})
    >>> print(t)
    {'name': 'Ferry', 'hobbies': ['programming', 'sci-fi', 'gaming']}
    """
    for k, v in src.items():
        if k in target and isinstance(target[k], int) and isinstance(v, str):
            try:
                v = int(v)
            except Exception:
                pass
        if k in target and type(target[k]) != type(v):
            logger.warning(f"Ignoring field {k} it's a {type(v)} and we expect a {type(target[k])}")
            continue

        if type(v) == list:
            if k not in target:
                target[k] = copy.deepcopy(v)
            elif isinstance(target[k], list):
                target[k].extend(v)
            elif isinstance(target[k], str):
                # Very special case to handle `AbstractText` which sometimes end up
                # being a list.
                new_v = " ".join(el for el in v if isinstance(el, str))
                target[k] = new_v
            else:
                logger.warning(f"Ignoring field {k} it's a {type(v)} and we expect a {type(target[k])}")
        elif type(v) == dict:
            if k not in target:
                target[k] = copy.deepcopy(v)
            elif isinstance(target[k], dict):
                deepupdate(target[k], v)
            else:
                logger.warning(f"Ignoring field {k} it's a {type(v)} and we expect a {type(target[k])}")
        elif type(v) == set:
            if k not in target:
                target[k] = v.copy()
            elif isinstance(target[k], set):
                target[k].update(v.copy())
            else:
                logger.warning(f"Ignoring field {k} it's a {type(v)} and we expect a {type(target[k])}")
        else:
            if isinstance(target[k], (list, tuple, dict)):
                logger.warning(f"Ignoring field {k} it's a {type(v)} and we expect a {type(target[k])}")
                continue

            target[k] = copy.copy(v)


def default_date():
    return {"Year": 0, "Month": 0, "Day": 0}


def default_inline_article():
    return {
        # 'Journal': Journal,
        "Abstract": {"AbstractText": ""},
        "ArticleTitle": "",
        # 'Pagination': {'MedlinePgn': datasets.Value('string')},
        "AuthorList": {"Author": []},
        "Language": "",
        "GrantList": {
            "Grant": [],
        },
        "PublicationTypeList": {"PublicationType": []},
    }


def default_article():
    return {
        "MedlineCitation": {
            "PMID": 0,
            "DateCompleted": default_date(),
            "NumberOfReferences": 0,
            "DateRevised": default_date(),
            "Article": default_inline_article(),
            "MedlineJournalInfo": {"Country": ""},
            "ChemicalList": {"Chemical": []},
            "CitationSubset": "",
            "MeshHeadingList": {"MeshHeading": []},
        },
        "PubmedData": {
            "ArticleIdList": [{"ArticleId": []}],
            "PublicationStatus": "",
            "History": {"PubMedPubDate": []},
            "ReferenceList": [],
        },
    }


class Pubmed(datasets.GeneratorBasedBuilder):
    """Pubmed citations records"""

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(name="2022", description="The 2022 annual record", version=datasets.Version("2.0.0")),
    ]

    # FILLED automatically from features
    SIMPLE_KEYS = {"PubmedArticleSet"}
    LIST_KEYS = {"PubmedArticle"}
    IGNORE_KEYS = set()

    def fill_keys_from_features(self, features):
        if isinstance(features, dict):
            for key, value in features.items():
                if isinstance(value, datasets.Sequence):
                    self.LIST_KEYS.add(key)
                    self.fill_keys_from_features(value.feature)
                else:
                    self.SIMPLE_KEYS.add(key)
                    self.fill_keys_from_features(value)

    def xml_to_dictionnary(self, parentElement):
        data = {}
        if parentElement.tag in {"AbstractText", "ArticleTitle"}:
            # XXX
            # Very special case, it will contain html leading to having very odd structure
            tag = parentElement.tag
            string = ET.tostring(parentElement).decode("utf-8").strip()
            inner_string = string[len(f"<{tag}>") : -len(f"</{tag}>")]
            return {parentElement.tag: inner_string}

        for child in list(parentElement):
            child.text = child.text if (child.text is not None) else " "
            key = child.tag
            if len(child) == 0:
                value = child.text.strip()
            else:
                value = self.xml_to_dictionnary(child)
                if isinstance(value, dict) and set(value.keys()) == {key}:
                    value = value[key]

            if key in data:
                old_value = data[key]
                if isinstance(old_value, dict):
                    data[key] = [old_value, value]
                elif isinstance(old_value, list):
                    data[key].append(value)
            elif key in self.LIST_KEYS:
                data[key] = [value]
            elif key in self.SIMPLE_KEYS:
                data[key] = value
            elif key in self.IGNORE_KEYS:
                continue
            else:
                logger.info(f"Ignoring key {key} from {parentElement.tag}")
                self.IGNORE_KEYS.add(key)

        # Filling defaults
        if parentElement.tag == "MeshHeading" and "QualifierName" not in data:
            data["QualifierName"] = ""
        elif parentElement.tag == "Author":
            if "ForeName" not in data:
                data["ForeName"] = ""
            if "Initials" not in data:
                data["Initials"] = ""
            if "LastName" not in data:
                data["LastName"] = ""
            if "CollectiveName" not in data:
                data["CollectiveName"] = ""
        elif parentElement.tag == "JournalIssue":
            if "Volume" not in data:
                data["Volume"] = ""
            if "Issue" not in data:
                data["Issue"] = ""
        elif parentElement.tag == "Grant" and "GrantID" not in data:
            data["GrantID"] = ""

        return {parentElement.tag: data}

    def _info(self):
        Date = {
            "Year": datasets.Value("int32"),
            "Month": datasets.Value("int32"),
            "Day": datasets.Value("int32"),
        }

        MeshHeading = {"DescriptorName": datasets.Value("string"), "QualifierName": datasets.Value("string")}

        MedlineJournalInfo = {
            "Country": datasets.Value("string"),
            # Too inconsistent
            # 'MedlineTA': datasets.Value('string'),
            # 'NlmUniqueID': datasets.Value('string'),
            # 'ISSNLinking': datasets.Value('string'),
        }
        Chemical = {
            "RegistryNumber": datasets.Value("string"),
            "NameOfSubstance": datasets.Value("string"),
        }
        # Too inconsistent in the data to be used
        # Journal = {
        #         'ISSN': datasets.Value('string'),
        #         'JournalIssue': {
        #             'Volume': datasets.Value('string'),
        #             'Issue': datasets.Value('string'),
        #         },
        #         # 'PubDate': Date,
        #         'Title': datasets.Value('string'),
        #         'ISOAbbreviation': datasets.Value('string')
        #         }
        Author = {
            "LastName": datasets.Value("string"),
            "ForeName": datasets.Value("string"),
            "Initials": datasets.Value("string"),
            "CollectiveName": datasets.Value("string"),
        }
        Reference = {
            "Citation": datasets.Value("string"),
            "CitationId": datasets.Value("int32"),
        }
        Grant = {
            "GrantID": datasets.Value("string"),
            "Agency": datasets.Value("string"),
            "Country": datasets.Value("string"),
        }
        Article = {
            # 'Journal': Journal,
            "Abstract": {"AbstractText": datasets.Value("string")},
            "ArticleTitle": datasets.Value("string"),
            # Too inconistent
            # 'Pagination': {'MedlinePgn': datasets.Value('string')},
            "AuthorList": {"Author": datasets.Sequence(Author)},
            "Language": datasets.Value("string"),
            "GrantList": {
                "Grant": datasets.Sequence(Grant),
            },
            "PublicationTypeList": {"PublicationType": datasets.Sequence(datasets.Value("string"))},
        }
        features = datasets.Features(
            {
                "MedlineCitation": {
                    "PMID": datasets.Value("int32"),
                    "DateCompleted": Date,
                    "NumberOfReferences": datasets.Value("int32"),
                    "DateRevised": Date,
                    "Article": Article,
                    "MedlineJournalInfo": MedlineJournalInfo,
                    "ChemicalList": {"Chemical": datasets.Sequence(Chemical)},
                    "CitationSubset": datasets.Value("string"),
                    "MeshHeadingList": {
                        "MeshHeading": datasets.Sequence(MeshHeading),
                    },
                },
                "PubmedData": {
                    "ArticleIdList": datasets.Sequence({"ArticleId": datasets.Sequence(datasets.Value("string"))}),
                    "PublicationStatus": datasets.Value("string"),
                    "History": {"PubMedPubDate": datasets.Sequence(Date)},
                    "ReferenceList": datasets.Sequence(Reference),
                },
            }
        )
        self.fill_keys_from_features(features)
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        dl_dir = dl_manager.download_and_extract(_URLs)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"filenames": dl_dir},
            ),
        ]

    def update_citation(self, article):
        """
        ArticleId and ArticleIdList are already used field name so we rewrite and
        flatten those as {Citation, CitationId}.
        """
        citations = []
        try:
            list_ = article["PubmedData"]["ReferenceList"]
        except Exception:
            return

        for ref in list_:
            if "Reference" not in ref:
                continue
            for re in ref["Reference"]:
                if "Citation" not in re:
                    continue
                citation = re["Citation"]
                if "ArticleIdList" not in re:
                    continue
                for r in re["ArticleIdList"]:
                    if "ArticleId" not in r:
                        continue
                    for rr in r["ArticleId"]:
                        try:
                            citation = {"Citation": citation, "CitationId": int(rr)}
                        except Exception:
                            continue
                        citations.append(citation)
        article["PubmedData"]["ReferenceList"] = citations

    def _generate_examples(self, filenames):
        """Yields examples."""
        id_ = 0
        for filename in filenames:
            try:
                tree = ET.parse(filename)
                root = tree.getroot()
                xmldict = self.xml_to_dictionnary(root)
            except ET.ParseError:
                logger.warning(f"Ignoring file {filename}, it is malformed")
                continue

            for article in xmldict["PubmedArticleSet"]["PubmedArticle"]:
                self.update_citation(article)
                new_article = default_article()

                try:
                    deepupdate(new_article, article)
                except Exception:
                    logger.warning(f"Ignoring article {article}, it is malformed")
                    continue

                try:
                    _ = self.info.features.encode_example(new_article)
                except Exception as e:
                    logger.warning(f"Ignore example because {e}")
                    continue
                yield id_, new_article
                id_ += 1