Datasets:

Languages:
English
License:
wzkariampuzha commited on
Commit
2a3745f
·
1 Parent(s): 9a51e79

Delete EpiSet4NER.py

Browse files
Files changed (1) hide show
  1. EpiSet4NER.py +0 -135
EpiSet4NER.py DELETED
@@ -1,135 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2020 HuggingFace Datasets Authors.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
-
16
- # Lint as: python3
17
- """INSERT TITLE"""
18
-
19
- import logging
20
-
21
- import datasets
22
-
23
-
24
- _CITATION = """\
25
- *REDO*
26
- @inproceedings{wang2019crossweigh,
27
- title={CrossWeigh: Training Named Entity Tagger from Imperfect Annotations},
28
- author={Wang, Zihan and Shang, Jingbo and Liu, Liyuan and Lu, Lihao and Liu, Jiacheng and Han, Jiawei},
29
- booktitle={Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)},
30
- pages={5157--5166},
31
- year={2019}
32
- }
33
- """
34
-
35
- _DESCRIPTION = """\
36
- **REWRITE*
37
- EpiSet4NER is a dataset generated from 620 rare disease abstracts labeled using statistical and rule-base methods. The test set was then manually corrected by a rare disease expert.
38
- For more details see *INSERT PAPER* and https://github.com/ncats/epi4GARD/tree/master/EpiExtract4GARD#epiextract4gard
39
- """
40
-
41
- _URL = "https://github.com/NCATS/epi4GARD/raw/master/EpiExtract4GARD/datasets/EpiCustomV3/"
42
- _TRAINING_FILE = "train.txt"
43
- _VAL_FILE = "val.txt"
44
- _TEST_FILE = "test.txt"
45
-
46
-
47
- class EpiSetConfig(datasets.BuilderConfig):
48
- """BuilderConfig for Conll2003"""
49
-
50
- def __init__(self, **kwargs):
51
- """BuilderConfig forConll2003.
52
- Args:
53
- **kwargs: keyword arguments forwarded to super.
54
- """
55
- super(EpiSetConfig, self).__init__(**kwargs)
56
-
57
-
58
- class EpiSet(datasets.GeneratorBasedBuilder):
59
- """EpiSet4NER by GARD."""
60
-
61
- BUILDER_CONFIGS = [
62
- EpiSetConfig(name="EpiSet4NER", version=datasets.Version("1.0.0"), description="EpiSet4NER by NIH NCATS GARD"),
63
- ]
64
-
65
- def _info(self):
66
- return datasets.DatasetInfo(
67
- description=_DESCRIPTION,
68
- features=datasets.Features(
69
- {
70
- "id": datasets.Value("string"),
71
- "tokens": datasets.Sequence(datasets.Value("string")),
72
- "ner_tags": datasets.Sequence(
73
- datasets.features.ClassLabel(
74
- names=[
75
- "O",
76
- "B-EPI",
77
- "B-LOC",
78
- "B-STAT",
79
- "I-EPI",
80
- "I-LOC",
81
- "I-STAT",
82
- ]
83
- )
84
- ),
85
- }
86
- ),
87
- supervised_keys=None,
88
- homepage="https://github.com/ncats/epi4GARD/tree/master/EpiExtract4GARD#epiextract4gard",
89
- citation=_CITATION,
90
- )
91
-
92
- def _split_generators(self, dl_manager):
93
- """Returns SplitGenerators."""
94
- urls_to_download = {
95
- "train": f"{_URL}{_TRAINING_FILE}",
96
- "val": f"{_URL}{_VAL_FILE}",
97
- "test": f"{_URL}{_TEST_FILE}",
98
- }
99
- downloaded_files = dl_manager.download_and_extract(urls_to_download)
100
-
101
- return [
102
- datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
103
- datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["val"]}),
104
- datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
105
- ]
106
-
107
- def _generate_examples(self, filepath):
108
- logging.info("⏳ Generating examples from = %s", filepath)
109
- with open(filepath, encoding="utf-8") as f:
110
- guid = 0
111
- tokens = []
112
- ner_tags = []
113
- for line in f:
114
- if line.startswith("-DOCSTART-") or line == "" or line == "\n":
115
- if tokens:
116
- yield guid, {
117
- "id": str(guid),
118
- "tokens": tokens,
119
- "ner_tags": ner_tags,
120
- }
121
- guid += 1
122
- tokens = []
123
- ner_tags = []
124
- else:
125
- # EpiSet tokens are space separated
126
- splits = line.split(" ")
127
- tokens.append(splits[0])
128
- ner_tags.append(splits[1].rstrip())
129
- # last example
130
- if tokens:
131
- yield guid, {
132
- "id": str(guid),
133
- "tokens": tokens,
134
- "ner_tags": ner_tags,
135
- }