|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""INSERT TITLE"""
|
|
|
|
import logging
|
|
|
|
import datasets
|
|
|
|
|
|
_CITATION = """\
|
|
*REDO*
|
|
@inproceedings{wang2019crossweigh,
|
|
title={CrossWeigh: Training Named Entity Tagger from Imperfect Annotations},
|
|
author={Wang, Zihan and Shang, Jingbo and Liu, Liyuan and Lu, Lihao and Liu, Jiacheng and Han, Jiawei},
|
|
booktitle={Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)},
|
|
pages={5157--5166},
|
|
year={2019}
|
|
}
|
|
"""
|
|
|
|
_DESCRIPTION = """\
|
|
**REWRITE*
|
|
EpiSet4NER is a dataset generated from 620 rare disease abstracts labeled using statistical and rule-base methods. The test set was then manually corrected by a rare disease expert.
|
|
For more details see *INSERT PAPER* and https://github.com/ncats/epi4GARD/tree/master/EpiExtract4GARD#epiextract4gard
|
|
"""
|
|
|
|
_URL = "https://github.com/NCATS/epi4GARD/raw/master/EpiExtract4GARD/datasets/EpiCustomV3/"
|
|
_TRAINING_FILE = "train.tsv"
|
|
_VAL_FILE = "val.tsv"
|
|
_TEST_FILE = "test.tsv"
|
|
|
|
|
|
class EpiSetConfig(datasets.BuilderConfig):
|
|
"""BuilderConfig for Conll2003"""
|
|
|
|
def __init__(self, **kwargs):
|
|
"""BuilderConfig forConll2003.
|
|
Args:
|
|
**kwargs: keyword arguments forwarded to super.
|
|
"""
|
|
super(EpiSetConfig, self).__init__(**kwargs)
|
|
|
|
|
|
class EpiSet(datasets.GeneratorBasedBuilder):
|
|
"""EpiSet4NER by GARD."""
|
|
|
|
BUILDER_CONFIGS = [
|
|
EpiSetConfig(name="EpiSet4NER", version=datasets.Version("3.2"), description="EpiSet4NER by NIH NCATS GARD"),
|
|
]
|
|
|
|
def _info(self):
|
|
return datasets.DatasetInfo(
|
|
description=_DESCRIPTION,
|
|
features=datasets.Features(
|
|
{
|
|
"id": datasets.Value("string"),
|
|
"tokens": datasets.Sequence(datasets.Value("string")),
|
|
"ner_tags": datasets.Sequence(
|
|
datasets.features.ClassLabel(
|
|
names=[
|
|
"O",
|
|
"B-LOC",
|
|
"I-LOC",
|
|
"B-EPI",
|
|
"I-EPI",
|
|
"B-STAT",
|
|
"I-STAT",
|
|
]
|
|
)
|
|
),
|
|
}
|
|
),
|
|
supervised_keys=None,
|
|
homepage="https://github.com/ncats/epi4GARD/tree/master/EpiExtract4GARD#epiextract4gard",
|
|
citation=_CITATION,
|
|
)
|
|
|
|
def _split_generators(self, dl_manager):
|
|
"""Returns SplitGenerators."""
|
|
urls_to_download = {
|
|
"train": f"{_URL}{_TRAINING_FILE}",
|
|
"val": f"{_URL}{_VAL_FILE}",
|
|
"test": f"{_URL}{_TEST_FILE}",
|
|
}
|
|
downloaded_files = dl_manager.download_and_extract(urls_to_download)
|
|
|
|
return [
|
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
|
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["val"]}),
|
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
|
|
]
|
|
|
|
def _generate_examples(self, filepath):
|
|
logging.info("⏳ Generating examples from = %s", filepath)
|
|
with open(filepath, encoding="utf-8") as f:
|
|
guid = 0
|
|
tokens = []
|
|
ner_tags = []
|
|
for line in f:
|
|
if line.startswith("-DOCSTART-") or line == "" or line == "\n":
|
|
if tokens:
|
|
yield guid, {
|
|
"id": str(guid),
|
|
"tokens": tokens,
|
|
"ner_tags": ner_tags,
|
|
}
|
|
guid += 1
|
|
tokens = []
|
|
ner_tags = []
|
|
else:
|
|
|
|
splits = line.split("\t")
|
|
tokens.append(splits[0])
|
|
ner_tags.append(splits[1].rstrip())
|
|
|
|
if tokens:
|
|
yield guid, {
|
|
"id": str(guid),
|
|
"tokens": tokens,
|
|
"ner_tags": ner_tags,
|
|
} |