wzkariampuzha
commited on
Commit
·
d8a4214
1
Parent(s):
93d7d1f
Create EpiSet4BinaryClassification.py
Browse files
EpiSet4BinaryClassification.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""EpiClassify4GARD dataset."""
|
18 |
+
|
19 |
+
|
20 |
+
import csv
|
21 |
+
import datasets
|
22 |
+
from datasets.tasks import TextClassification
|
23 |
+
|
24 |
+
|
25 |
+
_DESCRIPTION = """\
|
26 |
+
INSERT DESCRIPTION
|
27 |
+
"""
|
28 |
+
_CITATION = """\
|
29 |
+
John JN, Sid E, Zhu Q. Recurrent Neural Networks to Automatically Identify Rare Disease Epidemiologic Studies from PubMed. AMIA Jt Summits Transl Sci Proc. 2021 May 17;2021:325-334. PMID: 34457147; PMCID: PMC8378621.
|
30 |
+
"""
|
31 |
+
|
32 |
+
_TRAIN_DOWNLOAD_URL = "https://raw.githubusercontent.com/ncats/epi4GARD/master/dataset/train.tsv"
|
33 |
+
_VAL_DOWNLOAD_URL = "https://raw.githubusercontent.com/ncats/epi4GARD/master/dataset/val.tsv"
|
34 |
+
_TEST_DOWNLOAD_URL = "https://raw.githubusercontent.com/ncats/epi4GARD/master/dataset/test.tsv"
|
35 |
+
|
36 |
+
|
37 |
+
class EpiClassify4GARD(datasets.GeneratorBasedBuilder):
|
38 |
+
"""EpiClassify4GARD text classification dataset."""
|
39 |
+
|
40 |
+
def _info(self):
|
41 |
+
return datasets.DatasetInfo(
|
42 |
+
description=_DESCRIPTION,
|
43 |
+
features=datasets.Features(
|
44 |
+
{
|
45 |
+
"abstract": datasets.Value("string"),
|
46 |
+
"label": datasets.features.ClassLabel(names=["1 = IsEpi", "0 = IsNotEpi"]),
|
47 |
+
}
|
48 |
+
),
|
49 |
+
homepage="https://github.com/ncats/epi4GARD/tree/master/Epi4GARD#epi4gard",
|
50 |
+
citation=_CITATION,
|
51 |
+
task_templates=[TextClassification(text_column="abstract", label_column="label")],
|
52 |
+
)
|
53 |
+
|
54 |
+
def _split_generators(self, dl_manager):
|
55 |
+
train_path = dl_manager.download_and_extract(_TRAIN_DOWNLOAD_URL)
|
56 |
+
val_path = dl_manager.download_and_extract(_VAL_DOWNLOAD_URL)
|
57 |
+
test_path = dl_manager.download_and_extract(_TEST_DOWNLOAD_URL)
|
58 |
+
return [
|
59 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}),
|
60 |
+
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": val_path }),
|
61 |
+
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_path}),
|
62 |
+
]
|
63 |
+
|
64 |
+
def _generate_examples(self, filepath):
|
65 |
+
"""Generate examples."""
|
66 |
+
with open(filepath, encoding="utf-8") as csv_file:
|
67 |
+
csv_reader = csv.reader(
|
68 |
+
csv_file, quotechar='"', delimiter="\t", quoting=csv.QUOTE_ALL, skipinitialspace=True
|
69 |
+
)
|
70 |
+
next(csv_reader)
|
71 |
+
for id_, row in enumerate(csv_reader):
|
72 |
+
abstract = row[0]
|
73 |
+
label = row[1]
|
74 |
+
yield id_, {"abstract": abstract, "label": int(label)}
|